[1]Li W, Liu B S.Experimental investigation on the effect of shot peening on contact fatigue strength for carburized and quenched gears[J].International Journal of Fatigue, 2018, 106:103-113.
[2]Li W, Deng S, Liu B S.Experimental study on the influence of different carburized layer depth on gear contact fatigue strength[J].Engineering Failure Analysis, 2019, 107:104225.
[3]Gebura A, Klysz S, Tokarski T.Monitoring wear of gear wheel of helicopter transmission using the FAM-C and FDM-A methods[J].Procedia Structural Integrity, 2019, 16:184-191.
[4]Yeo H.Design and aeromechanics investigation of compound helicopters[J].Aerospace Science and Technology, 2019, 88:158-173.
[5]Xia C J, Wang S L, Ma C, et al.Crucial geometric error compensation towards gear grinding accuracy enhancement based on simplified actual inverse kinematic model[J].International Journal of Mechanical Sciences, 2020, 169:105319.
[6]Sun S Y, Tang J Y, Tang Y L, et al.Simulation study on the effect of pre-cooling quenching process on deformation of half axle gear after heat treatment[J].Journal of Mechanical Transmission, 2018, 42(5):1-7.
[7]Farivar H, Prahl U, Hans M, et al.Microstructural adjustment of carburized steel components towards reducing the quenching-induced distortion[J].Journal of Materials Processing Technology, 2019, 264: 313-327.
[8]Beak J M, Cho Y R, Kim D J, et al.Plasma carburizing process for the low distortion of automobile gears[J].Surface and Coatings Technology, 2000, 131(1-3): 568-573.
[9]Zhang P, Zhang F C, Wang T S.Preparation and microstructure characteristics of low-temperature bainite in surface layer of low carbon gear steel[J].Applied Surface Science, 2011, 257(17):7609-7614.
[10]刘宗昌.材料组织结构转变原理[M].北京:冶金工业出版社,2006.
Liu Z C.Principle of Material Structure Transformation[M].Beijing: Metallurgical Industry Press,2006.
[11]张义帅,孙红星,刘丹,等.过冷奥氏体等温转变在转向轴齿预先热处理中的应用[J].锻压技术,2019,44(9):167-171.
Zhang Y S, Sun H X, Liu D, et al.Application of overcooling austenite isothermal transformation in pre-heat treatment for steering shaft tooth [J].Forging & Stamping Technology, 2019,44(9):167-171.
[12]张民.材料热处理对推土机重载齿轮弯曲疲劳性能影响研究[D].合肥:合肥工业大学,2018.
Zhang M.Effect of Materials and Heat Treatment on the Bending Fatigue Properties of Heavy-load Bulldozer Gears[D].Hefei: Hefei University of Technology,2018.
[13]黄金宝.重载传动齿轮钢淬透性及相变变形规律的研究[D].北京:北京交通大学,2017.
Huang J B.Research on the Hardenability and Phase Transformation Behavior of Heavy Transmission Gear Steel[D].Beijing: Beijing Jiaotong University,2017.
[14]Huang K, Yang W Y, Ye X M.Adjustment of machining-induced residual stress based on parameter inversion[J].International Journal of Mechanical Sciences, 2018, 135: 43-52.
[15]Llanos I, Aurrekoetxea M, Agirre A, et al.On-machine characterization of bulk residual stresses on machining blanks[J].Procedia CIRP, 2019, 82: 406-410.
[16]Wang Z B, Sun J F, Liu L B, et al.An analytical model to predict the machining deformation of frame parts caused by residual stress[J].Journal of Materials Processing Technology, 2019, 274:116282.
[17]Zhang W Q, Wang X L, Hu Y J, et al.Predictive modelling of microstructure changes, micro-hardness and residual stress in machining of 304 austenitic stainless steel[J].International Journal of Machine Tools and Manufacture, 2018, 130-131: 36-48.
[18]郭培燕.高速切削加工表面残余应力的分析和模拟[D].青岛:山东科技大学,2007.
Guo P Y.Analysis and Simulation of Residual Stresses in Machined Layer for High Speed Machining[D].Qingdao: Shandong University of Science and Technology, 2007.
[19]刘文文.机械加工表面残余应力的有限元模拟与实验研究[D].南京: 南京航空航天大学,2012.
Liu W W.Finite Element Simulation and Experiment of Residual Stress in Machined Surface[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2012.
[20]André Luiz Rocha D’Oliveira, Rego R R, Faria A R D.Residual stresses prediction in machining: Hybrid FEM enhanced by assessment of plastic flow[J].Journal of Materials Processing Technology, 2020, 275: 116332.
[21]Bilkhu R, Soberanis S A, Pinna C, et al.Machining distortion in asymmetrical residual stress profiles[J].Procedia CIRP, 2019, 82:395-399.
|