[1]Tsao L C, Huang Y T, Fan K H.Flow stress behavior of AZ61 magnesium alloy during hot compression deformation[J].Materials & Design, 2014, 53(1): 865-869.
[2]Mordike B L.Magnesium and magnesium alloys[J].Light Metals, 2001, 51: 2-15.
[3]Lu L, Liu T, Chen J, et al.Microstructure and corrosion behavior of AZ31 alloys prepared by dual directional extrusion[J].Materials & Design, 2012, 36(4):687-693.
[4]冯建铭, Eliane Giraud, 曹旭东, 等.考虑应变补偿的Al2024合金本构方程研究[J].塑性工程学报, 2017, 24(6): 157-162.
Feng J M, Eliane Giraud, Cao X D, et al.Study on constitutive equations of 2024 aluminum alloy considering the compensation of strain[J].Journal of Plasticity Engineering, 2017, 24(6):157-162.
[5]Lin Y C, Chen X M.A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J].Materials & Design, 2011, 32(4): 1733-1759.
[6]Wu H Y, Yang J C, Zhu F J, et al.Hot compressive flow stress modeling of homogenized AZ61 Mg alloy using strain-dependent constitutive equations[J].Materials Science and Engineering: A, 2013, 574(7): 17-24.
[7]叶丽燕, 翟月雯, 周乐育, 等.25Cr2Ni4MoV钢高温变形流变应力模型[J].锻压技术, 2019, 44(3): 144-148.
Ye L Y, Zhai Y W, Zhou L Y, et al.Flow stress model of 25Cr2Ni4MoV steel in hot compression test[J].Forging & Stamping Technology,2019, 44(3):144-148.
[8]Dong Y, Zhang C, Lu X, et al.Constitutive equations and flow behavior of an as-extruded AZ31 magnesium alloy under large strain condition[J].Journal of Materials Engineering and Performance, 2016, 25(6): 2267-2281.
[9]周峰, 王克鲁, 鲁世强, 等.基于应变补偿的含稀土Ti_2AlNb基合金高温本构模型[J].稀有金属, 2019, 43(3): 239-246.
Zhou F, Wang K L, Lu S Q, et al.High temperature constitutive model of rare earth Ti2AlNb based alloy based on strain compensation[J].Chinese Journal of Rare Metals, 2019, 43(3): 239-246.
[10]孔得磊, 雷丽萍, 曾攀.40Mn钢热变形行为及加工图研究[J].锻压技术, 2019, 44(3): 122-132.
Kong D L, Lei L P, Zeng P.Research on hot deformation behavior and processing map for 40Mn steel[J].Forging & Stamping Technology,2019, 44(3):122-132.
[11]柏阳, 吴玉程, 罗志勇, 等.基于Arrhenius方程和BP神经网络的2024Al/Al18B4O33w复合材料热变形流变应力预测[J].锻压技术, 2019, 44(8):168-175.
Bo Y, Wu Y C, Luo Z Y, et al.Prediction on hot deformation flow stress of 2024Al/Al18B4O33w composites based on Arrhenius equation and BP neural network[J].Forging & Stamping Technology, 2019,44(8):168-175.
[12]Quan G Z, Song T, Zhou Y J, et al.Relationship between mechanical properties and grain size of AZ80 at 350 ℃ under different strain rates[J].Transactions of Nonferrous Metals Society of China, 2010, 20(10): 584-588.
[13]Jia W, Xu S, Le Q, et al.Modified Fields-Backofen model for constitutive behavior of as-cast AZ31B magnesium alloy during hot deformation[J].Materials & Design, 2016, 106(12): 120-132.
[14]Chen W, Guan Y, Wang Z.Modeling of flow stress of high titanium content 6061 aluminum alloy under hot compression[J].Journal of Materials Engineering and Performance, 2016, 25(9): 4081-4088.
[15]张宪宏.镁合金热变形过程试验研究和数值模拟[D].上海:上海交通大学,2004.
Zhang X H.Experimental and Numerical Study of Magnesium Alloy during Hotworking Process[D].Shanghai: Shanghai JiaoTong University, 2004.
[16]Quan G, Tong Y, Luo G, et al.A characterization for the flow behavior of 42CrMo steel[J].Computational Materials Science, 2010, 50(1): 167-171.
[17]Lyu B J, Peng J, Shi D W, et al.Constitutive modeling of dynamic recrystallization kinetics and processing maps of Mg-2.0Zn-0.3Zr alloy based on true stress-strain curves [J].Materials Science and Engineering: A, 2013, 560: 727-733.
[18]Bhattacharya R, Lan Y J, Wynne B P, et al.Constitutive equations of flow stress of magnesium AZ31 under dynamically recrystallizing conditions[J].Journal of Materials Processing Technology, 2014, 214(7): 1408-1417.
[19]Tsao L, Wu H Y, Leong J C, et al.Flow stress behavior of commercial pure titanium sheet during warm tensile deformation[J].Materials & Design, 2012, 34(9): 179-184.
|