[1]Banerjee D, Williams J C. Perspectives on titanium science and technology [J]. Acta Materialia, 2013,61(3): 844-879.
[2]Yang H, Li H, Zhang Z, et al. Advances and trends on tube bending forming technologies [J]. Chinese Journal of Aeronautics, 2012,25(1): 1-12.
[3]江志强, 杨合, 詹梅, 等. 钛合金管材研制及其在航空领域应用的现状与前景 [J]. 塑性工程学报, 2009,16(4): 44-50.
Jiang Z Q,Yang H,Zhan M,et al. State-of-the-arts and prospectives of manufacturing and application of titanium alloy tube in aviation industry [J]. Journal of Plasticity Engineering, 2009,16(4): 44-50.
[4]徐宝池, 杨晨, 樊黎霞, 等. 变形量对冷径向锻造身管力学性能各向异性的影响 [J]. 兵器装备工程学报, 2020,41(5): 81-85.
Xu B C, Yang C, Fan L X, et al. Influence of forging ratio on mechanical properties anisotropy of precision forged barrel [J]. Journal of Ordnance Equipment Engineering, 2020,41(5): 81-85.
[5]吴国华, 肖寒, 周慧子, 等. 挤压态AZ31镁合金温热拉伸性能的各向异性 [J]. 中国有色金属学报, 2017,27(1): 57-63.
Wu G H, Xiao H, Zhou H Z, et al. Anisotropy of warm-temperature tensile properties of extruded AZ31 magnesium alloy [J]. The Chinese Journal of Nonferrous Metals, 2017,27(1): 57-63.
[6]林艳丽, 何祝斌, 初冠南, 等. 利用管状试样测试各向异性材料双向应力状态力学性能的新方法 [J]. 金属学报, 2017,53(9): 1101-1109.
Lin Y L, He Z B, Chu G N, et al. A new method for directly testing the mechanical properties of anisotropic materials in bi-axialstress state by tube bulging test [J]. Acta Metallurgica Sinica, 2017,53(9): 1101-1109.
[7]Nazari Tiji S A, Park T, Asgharzadeh A, et al. Characterization of yield stress surface and strain-rate potential for tubular materials using multiaxial tube expansion test method [J]. International Journal of Plasticity, 2020,133: 102838-102864.
[8]Zisis T, Giannakopoulos A E. Analysis of Knoop indentation strain hardening effects [J]. International Journal of Solids and Structures, 2011,48(22-23): 3217-3231.
[9]Li H, Zhang H Q, Yang H, et al. Anisotropic and asymmetrical yielding and its evolution in plastic deformation: Titanium tubular materials [J]. International Journal of Plasticity, 2017,90: 177-211.
[10]Dick C P, Korkolis Y P. Anisotropy of thin-walled tubes by a new method of combined tension and shear loading [J]. International Journal of Plasticity, 2015,71: 87-112.
[11]Dick C P, Korkolis Y P. Strength and ductility evaluation of cold-welded seams in aluminum tubes extruded through porthole dies [J]. Materials & Design, 2015,67: 631-636.
[12]Dick C P, Korkolis Y P. Mechanics and full-field deformation study of the ring hoop tension test [J]. International Journal of Solids and Structures, 2014,51(18): 3042-3057.
[13]He Z, Yuan S, Liu G, et al. Formability testing of AZ31B magnesium alloy tube at elevated temperature [J]. Journal of Materials Processing Technology, 2010,210(6-7): 877-884.
[14]Cui X L, Yuan S J. Determination of mechanical properties of anisotropic thin-walled tubes under three-dimensional stress state [J]. The International Journal of Advanced Manufacturing Technology, 2016,87(5-8): 1917-1927.
[15]Kuwabara T, Sugawara F. Multiaxial tube expansion test method for measurement of sheet metal deformation behavior under biaxial tension for a large strain range [J]. International Journal of Plasticity, 2013,45: 103-118.
[16]Kuwabara T. Anisotropic plastic deformation of extruded aluminum alloy tube under axial forces and internal pressure [J]. International Journal of Plasticity, 2005,21(1): 101-117.
[17]Korkolis Y, Kyriakides S. Inflation and burst of anisotropic aluminum tubes for hydroforming applications [J]. International Journal of Plasticity, 2008,24(3): 509-543.
[18]Yoon J, Cazacu O, Mishra R K. Constitutive modeling of AZ31 sheet alloy with application to axial crushing [J]. Materials Science and Engineering: A, 2013,565: 203-212.
[19]Hu Q, Li X, Han X, et al. A normalized stress invariant-based yield criterion: Modeling and validation [J]. International Journal of Plasticity, 2017,99: 248-273.
[20]Stoughton T B, Yoon J. A pressure-sensitive yield criterion under a non-associated flow rule for sheet metal forming [J]. International Journal of Plasticity, 2004,20(4-5): 705-731.
[21]Kuwabara T. Advances in experiments on metal sheets and tubes in support of constitutive modeling and forming simulations [J]. International Journal of Plasticity, 2007,23(3): 385-419.
[22]Yin Q, Soyarslan C, Isik K, et al. A grooved in-plane torsion test for the investigation of shear fracture in sheet materials [J]. International Journal of Solids and Structures, 2015,66: 121-132.
[23]Abedini A, Butcher C, Rahmaan T, et al. Evaluation and calibration of anisotropic yield criteria in shear loading: Constraints to eliminate numerical artefacts [J]. International Journal of Solids and Structures, 2018,151: 118-134.
[24]Ghaffari Tari D, Worswick M J, Ali U, et al. Mechanical response of AZ31B magnesium alloy: Experimental characterization and material modeling considering proportional loading at room temperature [J]. International Journal of Plasticity, 2014,55: 247-267.
[25]Martínez A, Miguel V, Coello J, et al. Determining stress distribution by tension and by compression applied to steel: Special analysis for TRIP steel sheets [J]. Materials & Design, 2017,125: 11-25.
[26]Bennett C J, Leen S B, Williams E J, et al. A critical analysis of plastic flow behaviour in axisymmetric isothermal and Gleeble compression testing [J]. Computational Materials Science, 2010,50(1): 125-137.
[27]Cao J, Lee W, Cheng H S, et al. Experimental and numerical investigation of combined isotropic-kinematic hardening behavior of sheet metals [J]. International Journal of Plasticity, 2009,25(5): 942-972.
[28]Kitamura K, Terano M. Determination of local properties of plastic anisotropy in thick plate by small-cube compression test for precise simulation of plate forging [J]. CIRP Annals, 2014,63(1): 293-296.
[29]Ul Hassan H, Maqbool F, Güner A, et al. Springback prediction and reduction in deep drawing under influence of unloading modulus degradation [J]. International Journal of Material Forming, 2016,9(5): 619-633.
[30]Yang H, Li H, Ma J, et al. Temperature dependent evolution of anisotropy and asymmetry of α-Ti in thermomechanical working: Characterization and modeling [J]. International Journal of Plasticity, 2020,127: 102650-102690.
[31]Kabirian F, Khan A S, Gnupel-Herlod T. Visco-plastic modeling of mechanical responses and texture evolution in extruded AZ31 magnesium alloy for various loading conditions [J]. International Journal of Plasticity, 2015,68: 1-20.
[32]Patra A, Zhu T, Mcdowell D L. Constitutive equations for modeling non-Schmid effects in single crystal BCC-Fe at low and ambient temperatures [J]. International Journal of Plasticity, 2014,59: 1-14.
[33]Tuninetti V, Gilles G, Milis O, et al. Anisotropy and tension-compression asymmetry modeling of the room temperature plastic response of Ti-6Al-4V [J]. International Journal of Plasticity, 2015,67: 53-68.
[34]Gawad J, Banabic D, Van Bael A, et al. An evolving plane stress yield criterion based on crystal plasticity virtual experiments [J]. International Journal of Plasticity, 2015,75: 141-169.
[35]张飞飞, 陈劼实, 陈军, 等. 各向异性屈服准则的发展及实验验证综述 [J]. 力学进展, 2012,42(1): 68-80.
Zhang F F,Chen J S,Chen J,et al. Review on development and experimental validation for anisotropic yield criterions [J]. Advances in Mechanics, 2012,42(1): 68-80.
[36]Barlat F, Brem J C, Yoon J W, et al. Plane stress yield function for aluminum alloy sheets—Part 1: Theory [J]. International Journal of Plasticity, 2003,19(9): 1297-1319.
[37]Barlat F, Aretz H, Yoon J W, et al. Linear transfomation-based anisotropic yield functions [J]. International Journal of Plasticity, 2005,21(5): 1009-1039.
[38]Cazacu O, Plunkett B, Barlat F. Orthotropic yield criterion for hexagonal closed packed metals [J]. International Journal of Plasticity, 2006,22(7): 1171-1194.
[39]Yoon J W, Lou Y, Yoon J, et al. Asymmetric yield function based on the stress invariants for pressure sensitive metals [J]. International Journal of Plasticity, 2014,56: 184-202.
[40]Li H, Hu X, Yang H, et al. Anisotropic and asymmetrical yielding and its distorted evolution: Modeling and applications [J]. International Journal of Plasticity, 2016,82: 127-158.
[41]Zhang K, He Z, Zheng K, et al. Experimental verification of anisotropic constitutive models under tension-tension and tension-compression stress states [J]. International Journal of Mechanical Sciences, 2020,178: 105618-105632.
[42]Wang X, Hu W, Huang S, et al. Experimental investigations on extruded 6063 aluminium alloy tubes under complex tension-compression stress states [J]. International Journal of Solids and Structures, 2019,168: 123-137.
[43]Khalfallah A, Oliveira M C, Alves J L, et al. Mechanical characterization and constitutive parameter identification of anisotropic tubular materials for hydroforming applications [J]. International Journal of Mechanical Sciences, 2015,104: 91-103.
[44]Hu W L. An orthotropic yield criterion in a 3-D general stress state [J]. International Journal of Plasticity, 2005,21(9): 1771-1796.
[45]Nixon M E, Cazacu O, Lebensohn R A. Anisotropic response of high-purity α-titanium: Experimental characterization and constitutive modeling [J]. International Journal of Plasticity, 2010,26(4): 516-532.
[46]Plunkett B, Lebensohn R A, Cazacu O, et al. Anisotropic yield function of hexagonal materials taking into account texture development and anisotropic hardening [J]. Acta Materialia, 2006,54(16): 4159-4169.
[47]Baral M, Hama T, Knudsen E, et al. Plastic deformation of commercially-pure titanium: experiments and modeling [J]. International Journal of Plasticity, 2018,105: 164-194.
|