网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铝合金管等径孔电磁脉冲翻孔实验研究
英文标题:Experimental research on equal diameter hole flanging by electromagnetic pulse for aluminum alloy tube
作者:马伯洋 杨澍 李春峰 于海平 
单位:哈尔滨工业大学 金属精密热加工国家级重点实验室 沈阳中钛装备制造有限公司 
关键词:电磁脉冲成形 铝合金 多通管件 翻孔 预制孔 
分类号:TG391
出版年,卷(期):页码:2021,46(4):191-198
摘要:

传统工艺成形多通管件存在工装结构和工序复杂等问题。通过控制各项工艺参数,研究铝合金管电磁脉冲翻孔过程中主要参数的影响规律,获得了极限翻孔系数。研究结果表明:最佳预制孔形状为椭圆形;高放电频率会使管坯变形过快,从而导致裂纹产生;低放电频率会导致趋肤深度增大,使管坯外侧在变形中产生反向作用力而难以贴模;在一定范围内增大放电电压有利于管坯贴模;适当的润滑可以有效抑制翻孔端口的壁厚减薄。在本文条件下,等径翻孔的最大翻孔高度达6 mm,相比于常规翻孔工艺的理论值,极限翻孔系数降低了20.9%。

Multi-pass tubes formed by traditional technology exist the problems such as complex tooling structure and process and so on. Therefore, through controlling various process parameters, the influence laws of main parameters in the flanging process by electromagnetic pulse were studied, and the limit flanging coefficient was obtained. The results show that the best prefabricated hole shape is oval, and the high discharge frequency causes the tube blank to deform too fast, which leads to cracks, but low discharge frequency causes the skin depth to increase, which makes the outer side of tube blank produce a reverse force during deformation and makes it difficult to stick to the mold. It can be seen that increasing the discharge voltage within a certain range is beneficial to the tube blank sticking to the mold, and proper lubrication effectively inhibits the wall thickness thinning of the flanging port. Thus, the maximum flanging height of equal-diameter hole is up to 6 mm, and compared with the theoretical value of conventional flanging process, the limit flanging coefficient is reduced by 20.9%.

基金项目:
国家自然科学基金面上项目(51675128)
作者简介:
马伯洋(2000-),男,本科生 E-mail:1170910219@stu.hit.edu.cn 通讯作者:于海平(1974-),男,博士,副教授,博士生导师 E-mail:haipingy@hit.edu.cn
参考文献:


[1]Songa W J, Heob S C, Kimb J, et al. Investigation on preformed shape design to improve formability in tube hydroforming process using FEM
[J]. Journal of Materials Processing Technology, 2006, 177(3):658-662.



[2]魏国玲, 廉爱东, 曹可, 等. T型管的液压成形研究及模拟分析
[J]. 材料科学与工程学报, 2018, 36(2): 291-295,310.


Wei G L, Lian A D, Cao K, et al. Formability research and numerical analysis on t-shaped tube hydroforming
[J]. Journal of Materials Science and Engineering, 2018, 36(2): 291-295,310.



[3]Lin F C, Kwan C T. Application of abductive network and FEM to predict an acceptable product on T-shape tube hydroforming process
[J]. Computers & Structures, 2004, 82(15-16):1189-1200.



[4]古丽. 大口径无缝三通管翻孔成形工艺研究
[J]. 重型机械, 2013, (1): 47-51.


Gu L. Research of large-diameter seamless T-tube flanging process
[J]. Heavy Machinery, 2013, (1): 47-51.



[5]杨澍. 管件磁脉冲侧翻边工艺研究
[D]. 哈尔滨: 哈尔滨工业大学, 2011.


Yang S. Research on Technologies of Tube Magnetic Pules Flanging
[D]. Harbin: Harbin Institute of Technology,2011.



[6]Tamnane A A, Vohnout V J, Padmanaghan M, et al. Opportunities in the high velocity forming of sheet metal
[J]. Metal Forming, 1997, (1): 42-49.



[7]林遵东,吕枫,韩玉杰,等. TA32钛合金板成形性能与电磁辅助弯曲成形实验研究
[J]. 锻压技术, 2021, 46(1): 104-109.


Lin Z D, Lyu F, Han Y J,et al. Experimental study on formability and electromagnetic-assisted bending for TA32 titanium alloy sheets
[J]. Forging & Stamping Technology, 2021, 46(1): 104-109.



[8]崔晓辉, 周向龙, 杜志浩, 等. 电磁脉冲成形技术新进展及其在飞机蒙皮件制造中的应用
[J]. 航空制造技术, 2020, 63(3): 22-32.


Cui X H, Zhou X L,Du Z H,et al. New development of electromagnetic pulse forming technology and its application in aircraft skin parts manufacturing
[J]. Aeronautical Manufacturing Technology, 2020, 63(3): 22-32.



[9]黄攀, 黄亮, 苏红亮, 等. 基于板料电磁翻边的电磁力分布对成形质量影响的数值模拟研究
[J]. 稀有金属材料与工程, 2019, 48(9): 2987-2993.


Huang P, Huang L, Su H L, et al. Electromagnetic force distribution and its effect on the forming quality for numerical simulation study of electromagnetic flanging of sheet metal
[J]. Rare Metal Materials and Engineering, 2019, 48(9): 2987-2993.



[10]张润凯, 朱卫东, 翟月雯, 等. 铝合金板材电磁脉冲包边成形工艺的数值模拟
[J]. 锻压技术, 2020, 45(8): 117-126.


Zhang R K, Zhu W D, Zhai Y W, et al. Numerical simulation of electromagnetic pulse hemming process for aluminum alloy sheet
[J]. Forging & Stamping Technology, 2020, 45(8): 117-126.



[11]Fang J, Mo J, Li J. Microstructure difference of 5052 aluminum alloys under conventional drawing and electromagnetic pulse assisted incremental drawing
[J]. Materials Characterization, 2017, 129: 88-97.



[12]Belloir F, Huez R, Billat A. A smart flat-coil eddy-current sensor for metal-tag recognition
[J]. Measurement Science and Technology, 2000, 11(4): 367-374.



[13]李春峰. 高能率成形技术
[M]. 北京:机械工业出版社, 2001.


Li C F. High Energy Rate Forming Technology
[M].Beijing: China Machine Press, 2001.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9