网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
薄壁铜管旋转模压法缩径成形质量实验与仿真研究
英文标题:Experimental and simulation study on quality of thinwall copper tube after tube sinking with a rotatory die
作者:王旭 李勇 韩皓阳 尹中锡 唐新开 
单位:华南理工大学 广东德镒盟新材料有限公司 
关键词:薄壁铜管 缩径 成形质量 ABAQUS 完全热力耦合 
分类号:TG379
出版年,卷(期):页码:2021,46(5):72-78
摘要:

 旋转模压缩径工艺是薄壁铜管制造超薄微热管的重要工序,针对外径为Φ5 mm、壁厚为0.1、0.2、0.3 mm的铜管,通过实验探究了模具转速、模具进给速度与铜管壁厚3个参数对缩径成形质量的影响。结果表明,该工艺下,铜管表现出3种成形现象:顺利成形、规则压溃及弯折。在其余参数一定的情况下,增大模具进给速度会使铜管发生从顺利成形到规则压溃、再到弯折的转变,并减小已成形区长度。增大模具转速会提高已成形区长度与临界进给速度。铜管壁厚的增加在一定程度上可以提高转折长度:铜管壁厚由0.1 mm增加至0.2 mm时,提高效果明显,但由0.2 mm增加至0.3 mm时,无明显变化。实验中的最优工艺参数为:模具转速为4800 r·min-1,模具进给速度为50 mm·s-1,可兼顾成形质量与生产效率。基于ABAQUS有限元软件建立铜管旋转模压缩径仿真模型,辅助分析成形过程并验证了实验结果。

 

 The tube sinking with a rotatory die is an essential process for thin-walled copper tube to manufacture ultra-thin micro heat pipe. For the copper tubes with the outer diameter of Φ5 mm and the wall thickness of 0.1, 0.2 and 0.3 mm respectively, the influences of die rotation speed, die feed speed and wall thickness of copper tube on the quality of tube sinking were studied experimentally. The results show that under this process, the copper tubes have three forming phenomena such as smooth forming, regular crushing and bending. When the certain other parameters are fixed, increasing the die feed speed causes the copper tube to undergo a transition from smooth forming to regular crushing, then to bending, and reduces the length of formed area. Then, increasing the die rotation speed enlarges the length of formed area and the critical feed speed. And increasing the wall thickness of copper tube magnifies the bending length to a certain extent. When the wall thickness of copper tube is increased from 0.1 mm to 0.2 mm, the improvement effect is obvious, but when the wall thickness of copper tube is increased from 0.2 mm to 0.3 mm, there is no significant change. In the experiment, the forming quality and the production efficiency are both good under the optimal process parameters with the die rotation speed of 4800 r·min-1 and the die of feed speed for 50 mm·s-1. Thus, based on finite element software ABAQUS, the simulation model of tube sinking with a rotatory die for copper tube is built up to assist the analysis of the forming process and verify the experimental results. 

 
基金项目:
国家自然科学基金资助项目(51675185);广东省自然科学基金资助项目(2018B030311043);广州市科技计划项目(201807010074)
作者简介:
王旭(1997-),男,硕士研究生 E-mail:wx199714@163.com 通讯作者:李勇(1974-),男,博士,教授 E-mail:meliyong@scut.edu.cn
参考文献:
[1]汤勇,唐恒,万珍平,等.超薄微热管的研究现状及发展趋势[J]. 机械工程学报, 2017,(20):144-157.

Tang Y, Tang H, Wan Z P, et al. Development status and perspective trend of ultrathin micro heat pipe[J]. Journal of Mechanical Engineering, 2017, (20):144-157.

[2]李勇,许泽川,汤勇,等.薄壁轴向微沟槽铜管高速旋压成形的数值模拟[J]. 华南理工大学学报:自然科学版, 2010, 38(1):128-133.

Li Y, Xu Z C, Tang Y, et al. Numerical simulation of highspeed spinning of thinwall copper tube with axial microgrooves[J]. Journal of South China University of Technology: Natural science Edition, 2010, 38(1):128-133.

[3]詹梅,石丰,邓强,等.铝合金波纹管无芯模缩径旋压成形机理与规律[J]. 塑性工程学报, 2014, 21(2):108-115.

Zhan M, Shi F, Deng Q, et al. Forming mechanism and rules of mandreless neckspinning on corrugated pipes[J]. Journal of Plasticity Engineering,2014, 21 (2):108-115.

[4]Huang C C, Hung J C, Hung C, et al. Finite element analysis on neckspinning process of tube at elevated temperature[J]. The International Journal of Advanced Manufacturing Technology, 2011, 56(9-12):1039-1048.

[5]Domblesky J P, Shivpuri R, Painter B. Application of the finiteelement method to the radial forging of large diameter tubes[J]. Journal of Materials Processing Technology, 1995, 49(1-2):57-74.

[6]Lu L S, Tang Y, Fang W Q, et al. Pipe reduction of miniature inner grooved copper tubes through rotary swaging process[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(2):377-384.

[7]Li Y, Huang J, Huang G, et al. Comparison of radial forging between the two-split and threesplit dies of a thinwalled copper tube during tube sinking[J]. Materials & Design, 2014, 56:822-832.

[8]邱泽宇,徐雪峰,付春林,等. 5A02铝合金薄壁管材热挤压缩径增厚成形试验研究及优化[J].塑性工程学报,2019,26(5):7-14.

Qiu Z Y, Xu X F, Fu C L, et al. Experimental research and optimization on hot extrusion shrinkage and thickening of 5A02 aluminum alloy thinwalled tube[J]. Journal of Plasticity Engineering,2019, 26(5):7-14.

[9]陈汇,郎利辉,杜传军,等.薄壁精密罐多道次缩口过程及其机理[J]. 北京航空航天大学学报,2011,37(7):805-810.

Chen H, Lang L H, Du C J, et al. Multistages necking process and mechanism of precision thinwalled can[J]. Journal of Beijing University of Aeronautics and Astronautics,2011,37(7):805-810.

[10]Tang Y, Lu L S, Yuan D, et al. Experimental and FEM study on sinking of miniature inner grooved copper tube[J]. Journal of Materials Processing Technology, 2009, 209(12-13):5333-5340.

[11]王同海. 管材塑性加工技术[M]. 北京:机械工业出版社, 1998.

Wang T H. Plastic Processing Technology for Pipes[M]. Beijing: China Machine Press, 1998.

[12]樊百林, 黄钢汉. 紫铜热塑性变形的研究[J]. 塑性工程学报, 2000,7(3):39-41.

Fan B L, Huang G H. Study of red copper at hot plasticity deformation[J]. Journal of Plasticity Engineering, 2000, 7(3):39-41.

[13]陈晓建, 张士宏. 铜管四辊行星轧制过程有限元模拟分析[J]. 塑性工程学报, 2009, 16(1):110-114.

Chen X J, Zhang S H. The finite element analysis on fourroll planetary rolling process of copper tube[J]. Journal of Plasticity Engineering,2009, 16(1):110-114.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9