网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
2024-T351铝合金方形光斑激光喷丸残余应力场数值模拟
英文标题:Numerical simulation on residual stress field in laser peening with a square spot for 2024-T351 aluminum alloy
作者:闾家阳 王永军 王俊彪 黄遐 曾元松 
单位:西北工业大学 中国航空制造技术研究院 
关键词:2024-T351铝合金 激光喷丸 残余应力 搭接 ABAQUS 
分类号:V261.8
出版年,卷(期):页码:2021,46(5):79-85
摘要:

 为了分析激光喷丸作用后,以2024-T351铝合金为代表的高强航空铝合金材料表面和内部残余应力的分布情况,并为后续板料激光喷丸变形分析打下基础,在ABAQUS软件平台上,构建了一种方形光斑激光冲击的有限元计算模型,对方形光斑激光冲击诱导的残余应力场进行了数值模拟,分析了在无搭接和搭接率为25%的两种情况下,激光冲击产生的残余应力场在空间上的分布特征,发现冲击坑中心处残余压应力值较大且均匀性较好,边缘处出现了较大的拉应力且应力梯度较大。通过进行无搭接的激光喷丸实验和X射线衍射应力测试实验,验证了有限元模型的有效性。试件表面形貌通过激光位移传感器进行了测量观察。

 

 In order to analyze the surface and inside residual stress distribution of high-strength aerospace aluminum alloy material represented by 2024-T351 aluminum alloy after laser peening and lay a foundation for the further analysis of plate deformation caused by laser peening, a finite element calculation model of laser shock with a square spot was constructed by software ABAQUS, and the residual stress field induced by laser shock with a square spot was simulated numerically. Then, the spatial distribution characteristics of the residual stress field generated by laser shock in the two cases of no overlap and 25% overlap rate were analyzed. The results show that the residual compressive stress in the center of impact pit is larger and better uniformity, and there is a larger tensile stress and a larger stress gradient at the edge. Furthermore, the validity of the FE model is verified by the experiments of laser peening without overlap and X-ray diffraction stress test, and the surface morphology of specimen is measured and observed by laser displacement sensor. 

基金项目:
民机专项(MJZ-2017-G-60)
作者简介:
闾家阳(1995-),男,博士研究生 E-mail:lyujy0315@hotmail.com 通讯作者:王俊彪(1963-),男,博士,教授 E-mail:wangjunb@nwpu.edu.cn
参考文献:

 [1]Peyre P, Fabbro R, Merrien P, et al. Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour[J]. Materials Science and Engineering: A, 1996, 210(1): 102-113.


[2]Arif A F M. Numerical prediction of plastic deformation and residual stresses induced by laser shock processing[J]. Journal of Materials Processing Technology, 2003, 136(1): 120-138.

[3]Braisted W, Brockman R. Finite element simulation of laser shock peening[J]. International Journal of Fatigue, 1999, 21(7): 719-724.

[4]杜建钧, 周建忠,杨超君,等. ABAQUS在板料激光喷丸成形模拟过程中的应用[J]. 应用激光, 2005, (6): 371-373.

Du J J, Zhou J Z, Yang C J, et al. Application of ABAQUS in simulation process of laser peen forming of sheet metal[J]. Applied Laser, 2005, (6): 371-373.

[5]杜建钧, 周建忠,杨超君,等. 基于ABAQUS的激光喷丸成形数值模拟[A]. 中国光学学会、中国电子学会. 第十七届全国激光学术会议[C]. 绵阳: 《中国激光》编辑部, 2005.

Du J J, Zhou J Z, Yang C J, et al. Numerical simulation of laser peen forming based on ABAQUS[A]. Chinese Optical Society, Chinese Institute of Electronics. The 17th National Laser Conference [C]. Mianyang: Editorial Department of Chinese Laser, 2005.

[6]周建忠, 倪敏雄,张永康,等. 金属板料激光喷丸成形理论研究与数值模拟[J]. 中国激光, 2007, (2): 288-294.

Zhou J Z, Ni M X, Zhang Y K, et al. Theoretical investigation and finite element simulation of laser peen forming of metal plate[J]. Chinese Journal of Lasers, 2007, (2): 288-294.

[7]张兴权. 金属板料激光喷丸成形机制研究与数值分析[D]. 镇江:江苏大学, 2007.

Zhang X Q. Study of Mechanism and Numerical Analysis on Forming 3-D Shape of Plate by Laser Peening[D]. Zhenjiang: Jiangsu University, 2007.

[8]张兴权, 张永康,顾永玉,等. 激光喷丸诱导的残余应力的有限元分析[J]. 塑性工程学报, 2008, 15(4): 188-193.

Zhang X Q, Zhang Y K, Gu Y Y, et al. Finite element simulation of residual stress induced by laser peening[J]. Journal of Plasticity Engineering, 2008, 15(4): 188-193.

[9]Wang Y, Fan Y, Vukelic S, et al. Energylevel effects on the deformation mechanism in microscale laser peen forming[J]. Journal of Manufacturing Processes, 2007, 9(1): 1-12.

[10]Zhang W, Yao Y L. Micro scale laser shock processing of metallic components[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2002, 124(2): 369-378.

[11]Fabbro R, Fournier J, Ballard P, et al. Physical study of laserproduced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2): 775-784.

[12]Hfaiedh N, Peyre P, Song H, et al. Finite element analysis of laser shock peening of 2050-T8 aluminum alloy[J]. International Journal of Fatigue, 2015, 70: 480-489.

[13]聂祥樊, 臧顺来,何卫锋,等. 激光冲击“残余应力洞”的参数敏感性分析及其抑制方法[J]. 高电压技术, 2014, 40(7): 2107-2112.

Nie F X, Zang S L, He W F, et al. Sensitivity analysis and restraining method of “residual stress hole” induced by laser shock peening[J]. High Voltage Engineering, 2014, 40(7): 2107-2112.

[14]Lesuer D. Experimental investigation of material models for Ti6Al4V and 2024T3[R]. Washington: Federal Aviation Administration, 2000.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9