网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
PH13-8Mo钢热变形行为及本构模型PH13-8Mo钢热变形行为及本构模型
英文标题:Hot deformation behavior and constitutive model for PH13-8Mo steel
作者:杨大伟 李伟 林莺莺 谷国君 
单位:北京航空材料研究院 
关键词:PH13-8Mo钢 热变形行为 显微组织 本构模型 
分类号:TG142
出版年,卷(期):页码:2021,46(5):234-239
摘要:

 利用Gleeble-1500热模拟机对PH13-8Mo钢进行不同参数下的热压缩试验,研究变形温度为850~1030 ℃,应变速率为0.1~10 s-1条件下试验钢的热变形行为。结果表明,PH13-8Mo钢热压缩变形过程中流变应力呈现先上升、后平缓最后继续上升的特征,动态回复和动态再结晶行为导致热变形过程中出现软化现象,较高的变形温度有助于动态再结晶发生,PH13-8Mo钢晶粒尺寸对温度的敏感性较高。基于试验结果,通过周纪华-管克智模型建立了PH13-8Mo钢热变形本构模型,能够反映试验钢热变形过程中真应力-真应变的变化规律,预测相关系数为0.965,均方差为20.9。借助模拟仿真分析验证,证实该模型对PH13-8Mo钢热加工工艺的合理选择提供了一定的理论参考。

 

 The hot compression test under different parameters of PH13-8Mo steel was conducted by Gleeble-1500 thermo-mechanical simulator. The hot deformation behaviors of test steel were studied at the deformation temperatures of 850-1030 ℃ and the strain rates of 0.1-10 s-1. The results show that the flow stress of PH13-8Mo steel increases first, and then falls into a stable stage and finally increases again in the hot compression deformation process. Dynamic recovery and recrystallization behaviors lead to the soften phenomenon in the hot deformation process, and higher deformation temperature contributes to the occurrence of dynamic recrystallization. There is a high temperature sensitivity with the grain sizes of PH13-8Mo steel. The hot deformation constitutive model of PH13-8Mo steel was built based on Z-G model and test results, which can reflect the true stress-true strain change laws of test steel in the hot deformation process. The related coefficient was 0.965 and the root mean square error was 20.9 in the predction. According to the simulation analysis and verification, the Z-G model provides theoretical reference for the selection of hot deformation process for PH13-8Mo steel.

 
基金项目:
作者简介:
杨大伟(1985-),男,硕士,工程师 E-mail:trustdavid@126.com
参考文献:
[1]Moradi M J, Emadoddin E, Omidvar H. Transient liquid phase bonding of 17-4-PH stainless steel using conventional and two-step heating process[J]. Metals and Materials International, 2020, https://doi.org/10.1007/s12540-020-00792-9. 

[2]张良, 雍岐龙, 梁剑雄, 等. PH13-8Mo高强不锈钢在不同温度时效后的析出相及其对力学性能的影响[J]. 机械工程材料, 2017, 41(3): 19-23,28.

Zhang L, Yong Q L, Liang J X, et al. Precipitated phases and effects of they on mechanical properties of PH13-8Mo high strength stainless steel after aging at different temperautres[J]. Materials for Mechanical Engineering, 2017, 41(3): 19-23,28.

[3]余伟, 许立雄, 张昳, 等. 95CrMo钢高温流变应力的本构方程[J]. 材料热处理学报, 2015, 36(10): 261-267.

Yu W, Xu L X, Zhang Y, et al. Constitutive equation for high temperature flow stress of 95CrMo steel[J]. Transactions of Materials and Heat Treatment, 2015, 36(10): 261-267.

[4]曲世永, 李民, 吕正风, 等. 车身用新型Al-Zn-Mg铝合金热变形本构方程及热加工图[J]. 塑性工程学报, 2020, 27(9): 161-166.

Qu S Y, Li M, Lyu Z F, et al. Hot deformation constitutive equation and hot processing map of novel Al-Zn-Mg aluminum alloy for automobile body[J]. Journal of Plasticity Engineering, 2020, 27(9): 161-166.

[5]Stonesifer F R, Smith H L. Fracture-toughness measurements on 12% Ni maraging steel weldment[J]. Journal of Hydronautics, 1969, 3(1): 54-57.

[6]Snir Y, Haroush S, Dannon A, et al. Aging condition and trapped hydrogen effects on the mechanical behavior of a precipitation hardened martensitic stainless steel[J]. Journal of Alloys and Compounds, 2019, 805:509-516.

[7]Li X F, Zhang J, Fu Q Q, et al. Hydrogen embrittlement of high strength steam turbine last stage blade steels: comparison between PH17-4 steel and PH13-8Mo steel[J]. Materials Science and Engineering: A, 2019, 742: 353-363.

[8]赵起越,赵晋斌, 刘彦宁, 等. PH13-8Mo不锈钢在半乡村大气环境中长周期腐蚀行为[J]. 工程科学学报, 2021, https://doi.org/10.13374/j.issn2095-9389.2019.11.08.001.

Zhao Q Y, Zhao J B Liu Y N, et al. Corrosion behavior of PH13-8Mo stainless steel after long-term exposure to semirural atmosphere[J]. Chinese Journal of Engineering, 2021, https://doi.org/10.13374/j.issn2095-9389.2019.11.08.001.

[9]孙明军, 刘洪. 退火工艺对高强冷轧马氏体钢力学性能的影响[J]. 热加工工艺, 2021, 50(4): 144-146, 150.

Sun M J, Liu H. Effects of annealing process on mechanical properties of high-strength cold-rolled martensite steel[J]. Hot Working Technology, 2021, 50(4): 144-146, 150.

[10]Yang Z N, Zhang F C, Zheng C L, et al. Study on hot deformation behaviour and processing maps of low carbon bainitic steel[J]. Materials and Design 2015, 66: 258-266.

[11]刘杰, 叶茂, 姜枫, 等. 固溶后冷处理对PH13-8Mo马氏体不锈钢组织及性能的影响[J]. 金属热处理, 2018, 43(2): 156-159.

Liu J, Ye M, Jiang F, et al. Effect of cryogenic treatment after solution on microstructure and mechanical properties of PH13-8Mo martensitic stainless steel[J]. Heat Treatment of Metals, 2018, 43(2): 156-159.


[12]周纪华,管克智. 金属塑性变形抗力[M].北京: 机械工业出版社, 1989.

Zhou J, Guan K Z. Plastic Deformation Stress of Metals[M]. Beijin: China Machine Press, 1989.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9