网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
大型轴类锻件典型锻造工艺微观组织模拟
英文标题:Microstructure simulation of typical forging process for large shaft forgings
作者:孙志仁1 2 孔德磊1 3 雷丽萍1 3 
单位:1. 清华大学 先进成形制造教育部重点实验室 3. 清华大学 机械工程系2. 北京科技大学 材料科学与工程学院  
关键词:大型轴类锻件 微观组织 锻造 动态再结晶 数值模拟 
分类号:TG142.1+4
出版年,卷(期):页码:2021,46(6):33-40
摘要:

 大型锻件自由锻过程的道次多、流程长,无法通过实验验证锻造过程中再结晶程度及晶粒尺寸的变化。建立了40Mn钢动态再结晶模型,并通过Gleeble热压缩实验进行了验证,然后,采用该动态再结晶模型对典型锻造工艺的镦粗和拔长进行模拟。结果表明:第2道次拔长后,锻坯大部分区域发生了完全动态再结晶,继续变形,则动态再结晶循环进行。变形后,锻坯中心区域的平均晶粒尺寸为117 μm左右;从中心向外,平均晶粒尺寸逐渐减小,表层平均晶粒尺寸为50 μm左右。靠近钳口位置的平均晶粒尺寸急剧变化,容易出现混晶现象;锻坯水口方向靠近表面,温度低,晶粒来不及长大,即开始进行下一轮动态再结晶,平均晶粒尺寸为33 μm左右。

 

 The free forging process of large forgings has many passes and long production process, and it is impossible to verify the changes in the degree of recrystallization and grain sizes during the forging process through experiments. The 40Mn steel dynamic recrystallization model was established and verified by Gleeble thermal compression experiment. Then, the dynamic recrystallization model was used to simulate the upsetting and stretching of the typical forging process. The results show that after the second pass during stretching, most areas of forging billet occurred complete dynamic recrystallization, and the dynamic recrystallization cycle proceeds as the deformation continuous. After deformation, the average grain size in the center area of forging billet is about 117 μm, and the average grain size gradually decreases from the center to the outside. The average grain size of surface layer is about 50 μm. The average grain size changes sharply near the jaws, and the phenomenon of mixed crystal is easy to appear. The temperature near the surface of forging billet is low along the direction of nozzle, so the next round of dynamic recrystallization begins before the grains have time to grow up, so the average grain size is about 33 μm.

基金项目:
国家重点研发计划(2017YFB0701801)
作者简介:
作者简介:孙志仁(1995-),男,博士研究生 E-mail:17888843263@163.com 通信作者:雷丽萍(1968-),女,博士,副研究员 E-mail:leilp@ mail.tsinghua.edu.cn
参考文献:

  [1]龙晓东,谭凯,刘猛.大型锻件工艺改进的探究[J].冶金与材料,202040(3)33-35.


 


Long X D, Tan K, Liu M. Research on the improvement of large forging process[J]. Metallurgy & Materials,2020,40(3):33-35.


 


[2]孔得磊,雷丽萍,曾攀.40Mn钢热变形行为及加工图研究[J].锻压技术,201944(3)122-132.


 


Kong D L, Lei L P, Zeng P. Research on hot deformation behavior and processing map for 40Mn steel[J]. Forging & Stamping Technology, 2019, 44(3): 122-132.


 


[3]Ciulik J, Taleff E M. Dynamic abnormal grain growth: A new method to produce single crystals[J]. Scripta Materialia, 2009, 61(9): 895-898.


 


[4]Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966,14(9):1136-1138.


 


[5]孙建新,孙鑫,张鹏,等.F92大型阀体锻件锻造工艺优化[J].锻造与冲压,2020(17)20-22.


 


Sun J X, Sun X, Zhang P, et al. Optimization of the forging process of F92 large valve body[J]. Forging & Metalforming, 2020(17):20-22.


 


[6]姚忠波,许四海.风机轴锻造工艺改进[J].一重技术,2020,(6)48-50.


 


Yao Z B, Xu S H. Improved forging technique for wind turbine shafts[J]. CFHI Technology ,2020,(6):48-50.


[7]李新生,王广春,丁明琦,等.芯轴拔长过程中翻转组合对变形均匀性的影响[J].塑性工程学报,202027(8)18-24.


 


Li X S, Wang G C, Ding M Q, et al. Effect of overturning combination on deformation uniformity in mandrel forging process[J]. Journal of Plasticity Engineering, 2020, 27(8):18-24.


 


[8]王恩博.铁素体不完全动态再结晶中晶粒尺寸的预测研究[J].热加工工艺,201241(19)17-19.


 


Wang E B. Forecasting study on grain size in ferrite incomplete dynamic recrystallization[J]. Hot Working Technology,2012,41(19):17-19.


 


[9]张桂福.20钢晶粒超细化工艺研究[J].四川冶金,201840(3)40-43.


 


Zhang G F. Study on the super fine grain technology of steel 20[J]. Sichuan Metallurgy,2018,40(3):40-43.


 


[10]朱百智,李小末,张伟.不同渗碳淬火模式下的18CrNiMo7-6钢晶粒度研究[J].金属加工:热加工,2020,(5)24-27.


 


Zhu B Z, Li X M, Zhang W. Study on grain size of 18CrNiMo7-6 steel under different carburizing and quenching modes[J]. MW Metal Working, 2020, (5): 24-27.


 


[11]谢浩,李锐.淬火温度对不同钴含量中、粗晶粒硬质合金组织与性能的影响[J].硬质合金,201633(3)169-175.


 


Xie H, Li R. Effect of quenching temperature on microstructure and properties of medium and coarse grained cemented carbide[J]. Cemented Carbide, 2016, 33(3): 169-175.


 


[12]丁春园,陈忠家,李赵明,等.高温轧制对AZ31B镁合金组织和性能的影响[J].有色金属加工,202150(2)17-22.


 


Ding C Y, Chen Z J, Li Z M, et al. Effects of high temperature rolling on microstructure and performance of AZ31B magnesium alloy[J]. Nonferrous Metals Processing , 2021, 50(2): 17-22.


 


[13]沈力,温志航,马遥遥,等.镍基高温合金热塑性变形晶粒细化与粗化的博弈关系及演进[J].材料导报,2021,(18)1-13.


 


Shen L, Wen Z H, Ma Y Y, et al. Game relation between grain refinement and grain coarsening in thermoplastic deformation of nickel-based superalloy and its evolution[J]. Materials Review, 2021, (18):1-13.


 


[14]王永善,胡志强,王开坤,等.热作模具钢5CrNiMoV的亚动态再结晶行为研究[J].塑性工程学报,202128(3)118-125.


 


Wang Y S, Hu Z Q, Wang K K, et al. Investigation on meta-dynamic recrystallization behavior of 5CrNiMoV hot-working die steel[J]. Journal of Plasticity Engineering, 2021, 28(3):118-125.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9