网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
椭球瓜瓣构件充液成形模具设计及优化
英文标题:Design and optimization on hydroforming die for ellipsoidal melon petal component
作者:毕海娟1 田恕1 李继光1 杨声伟2 于弘喆2 
单位:1.天津航天长征火箭制造有限公司 2.天锻航空科技有限公司 
关键词:充液成形 回弹补偿 椭球瓜瓣 壁厚同板差 型面偏差 
分类号:TG394
出版年,卷(期):页码:2021,46(6):167-173
摘要:

 以两种材质(2219铝合金及2A14铝合金)、8种厚度规格(4.5~9.5 mm)的航天运载火箭用铝合金椭球瓜瓣构件产品为研究对象,以板坯减薄率、壁厚同板差及型面偏差为技术指标,通过理论计算、软件辅助等手段设计完成了一套通用的充液成形模具,并利用有限元软件对全部规格的椭球瓜瓣构件进行充液成形工艺仿真,得到了板坯成形后的技术指标参数。通过对模具进行仿真回弹补偿优化,并结合后期生产试验进行验证和改进,成功优化了一套可实现两种材质、8种规格的椭球瓜瓣构件制造的充液成形模具,板坯成形后,减薄率≥3%、壁厚同板差≤0.3 mm、型面偏差≤2 mm,试验板坯的尺寸及性能结果全部满足技术条件要求,极大地节约了模具投入成本,并提高了生产效率。

 For aluminum alloy ellipsoidal melon petal components used in space launch vehicle with two kinds of materials (2219 and 2A14 aluminum alloys) and eight thickness specifications (4.5-9.5 mm), taking thinning rate of slab, wall thickness difference and profile deviation as the technical indexes, a set of general hydroformuing die was designed by theoretical calculation and software aid, and the hydroforming process simulation for all specifications of the ellipsoidal melon petal components was conducted by FE software to obtain the technical parameters after the slab was formed. Then, a set of hydroforming die manufacturing two materials and eight specifications of ellipsoidal melon petal components was optimized successfully by the springback compensation optimization simulation combined with the production tests and improvements. And the dimensions and performance indicators of the test slabs all meet the technical requirements with the thinning rate ≥3%, the wall thickness difference≤0.3 mm and the profile deviation ≤2 mm, which greatly save the die cost and improve the production efficiency. 

基金项目:
天津市科技计划项目(17YFZCGX00530)
作者简介:
毕海娟(1983-),女,硕士,工程师 E-mail:bhj916@163.com
参考文献:

 [1]陈保国, 徐永超. 预胀对筒形件充液拉深变形和硬化的影响[J]. 材料科学与工艺,201119(1): 17-20.


 


Chen B G, Xu Y C. Influence of prebulging on deformation and hardness of dualphase steel cylindrical cup by hydrodynamic deep drawing process[J]. Materials Science & Technology201119(1): 17-20.


 


[2]杨声伟, 洪跃忠,郎利辉,等. 球形件整体成形充液胀形技术 [J]. 锻压技术,2020,45(4):120-125.


 


Yang S WHong Y ZLang L Het al. Hydroforming technology in integral forming of spherical parts [J]. Forging & Stamping Technology2020,45(4): 120-125.


 


[3]Meng B, Wan M, Yuan S, Influence of cavity pressure on hydrodynamic deep drawing of aluminum alloy rectangular box with wide flange [J]. International Journal of Mechanical Sciences201377:217-226.


 


[4]王耀, 郎利辉,孙志莹,等.铝合金发动机罩内板充液成形工艺研究[J].精密成形工程,20168(5): 47-52.


 


Wang Y, Lang L H, Sun Z Y, et al.Hydroforming for the aluminium alloy inner panel of automotive engine hood[J]. Journal of Netshape Forming Engineering20168(5):47-52.


 


[5]薛勇, 郎利辉,段江年.基于灰色系统理论的汽车横梁充液成形用坯料优化[J]. 塑性工程学报,200916(5): 59-64.


 


Xue Y, Lang L H, Duan J N. Optimization for hydroforming blanks of a car beam based on the grey system theory[J]. Journal of Plasticity Engineering, 200916(5): 59-64.


 


[6]李官. 基于FEA 的大高径比筒形件液压成形工艺的研究[D]. 哈尔滨:哈尔滨理工大学,2010.


 


Li G. Investigation on Large Heightdiameter Ratio Cylindrical Cup Forming Process by Hydrodynamic Deep Drawing Based on FEA[D]. Harbin: Harbin University of Science and Technology2010.


 


[7]Liu B S, Lang L H, Zeng Y S, et al. Forming characteristic of sheet hydroforming under the influence of throughthickness normal stress[J]. Journal of Material Processing Technology, 2012,212(9):1875-1884.


 


[8]郎利辉, 谢亚苏,王永铭. 飞机大型复杂双曲度蒙皮充液成形数值模拟及实验研究[J]. 精密成形工程,20113(6): 112-116.


 


Lang L H, Xie Y S, Wang Y M. Aircraft large complex double curvature skin hydroforming numerical simulation and experimental research[J]. Journal of Netshape Forming Engineering20113(6): 112-116.


 


[9]田恕, 张杰刚,李倩,等. 拉延筋结构对椭球瓜瓣构件充液拉深过程的影响 [J].锻压技术,2019,44(3):77-82.


 


Tian SZhang J GLi Qet al. Influence of drawbead structure on ellipsoidal scalloped segment component in hydraulic drawing process [J]. Forging & Stamping Technology2019, 44(3):77-82.


 


[10]付金蕊. 铝合金车门外板变压边力充液拉深工艺数值模拟研究[D]. 哈尔滨: 哈尔滨理工大学, 2014.


 


Fu J R. Research on the Aluminum Alloy Automobile Outdoor Forming by Hydrodynamic Deep Drawing Adopting Variable Blank Holder Force Based on Numerical Simulation[D]. Harbin: Harbin University of Science and Technology 2014.


 


[11]Gao T J, Wang YLiu J G, et al. Research on formability of aluminum alloy 2024 sheet by viscous pressure forming[J]. Advanced Materials Research,2013, 634: 2872-2876.


 


[12]丁少行, 郎利辉,黄磊.2024铝合金难成形高锥盒形件充液成形数值模拟[J]. 精密成形工程,20146(3): 31-35.


 


Ding S HLang L HHuang L. Simulation research on hydroforming of hard forming deep tapershaped part of 2024 aluminum alloy[J]. Journal of Netshape Forming Engineering20146(3): 31-35.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9