[1]李有智, 季业益, 陆宝山,等. 轧辊辊缝差和轧机组装间隙对精轧钢带尾板侧偏的影响[J]. 锻压技术,2021,46(1):116-125.
Li Y Z, Ji Y Y, Lu B S, et al. Influence of roll gap difference and mill assembly gap on side deviation of finished steel strip tail plate [J]. Forging & Stamping Technology,2021,46(1):116-125.
[2]黄鑫, 吴君三, 朱乾皓,等.70Cr3NiMo钢轧辊探伤不合格原因分析及改善措施[J]. 锻压技术,2019,44(10):20-24.
Huang X, Wu J S, Zhu Q H, et al. Analysis on disqualification reason and improvement measures of steel 70Cr3NiMo roller by ultrasonic inspection [J]. Forging & Stamping Technology,2019,44(10):20-24.
[3]曹建国,黄小海,赵秋芳,等.板带轧机通用变凸度板形控制技术[J].中南大学学报:自然科学版,2020,51(10):2772-2781.
Cao J G, Huang X H, Zhao Q F, et al. Universal variable crown technology for strip profile control in wide strip rolling mills [J]. Journal of Central South University:Science and Technology,2020,51(10):2772-2781.
[4]徐科,周鹏,贺笛,等.机器视觉技术及在钢铁生产中的应用[A].第十二届中国钢铁年会论文集——大会特邀报告&分会场特邀报告[C]. 北京:中国金属学会,2019.
Xu K, Zhou P, He D, et al. Machine vision technology and its application in iron and steel production [A]. Proceedings of the 12th China Iron and Steel Annual meeting-invited report of the General Assembly and Invited Report of the Branch Venue[C]. Beijing:China Metal Society, 2019.
[5]梁颖,詹光曹,徐科.基于二值化赋范梯度的中厚板表面缺陷检测[J].表面技术, 2019,48(10):336-341.
Liang Y, Zhan G C, Xu K. Surface defect detection of medium and heavy plates based on binarized normed gradients [J]. Surface Technology,2019,48(10):336-341.
[6]饶静,杨立庆,王超海,等.热连轧精轧机工作辊表面质量问题分析与改进[J].特钢技术,2019,25(4):56-59.
Rao J, Yang L Q, Wang C H, et al. Analysis and improvement of surface quality of finishing mill working roll [J]. Special Steel Technology,2019,25(4):56-59.
[7]于浩,于文禹. 利用无损检测方法探测轧辊缺陷的可靠性[J].无损探伤,2018,42(6):39-41.
Yu H, Yu W Y. Reliability of detecting roll defects by non-destructive testing method [J]. Nondestructive Inspection,2018,42(6):39-41.
[8]吴昆鹏,石杰.基于孪生网络的带钢表面周期性缺陷检测方法[J].冶金自动化,2020,44(6):93-98.
Wu K P, Shi J. Method for periodic defect detection of strip surface based on siamese network [J]. Metallurgical Industry Automation,2020,44(6):93-98.
[9]李永婷,夏琴香,肖刚锋,等. 基于机器视觉的锥形旋压件起皱缺陷在线检测方法[J]. 锻压技术,2019,44(1):134-141.
Li Y T, Xia Q X, Xiao G F, et al. On-line detection method of wrinkling defects of conical spinning parts based on machine vision [J]. Forging & Stamping Technology, 2019,44(1):134-141.
[10]李立新, 黄英钢, 张葵. 轧辊磨损过程中的形貌图像特征及分形[J].钢铁, 2015, 50(4):95-100.
Li L X, Huang Y G, Zhang K. Morphology image features and fractals during roll wear process[J]. Iron & Steel, 2015, 50(4): 95-100.
[11]肖艳军,齐浩,周围,等.锂电池极片轧机轧辊表面缺陷检测与识别[J].电子测量与仪器学报,2019,33(10):148-156.
Xiao Y J, Qi H, Zhou W, et al. Detection and recognition of roll surface defects in lithium battery pole rolling mill [J]. Journal of Electronic Measurement and Instrumentation, 2019,33 (10):148-156.
[12]蒋树强,闵巍庆,王树徽. 面向智能交互的图像识别技术综述与展望[J]. 计算机研究与发展, 2016, 53(1): 113-122.
Jiang S Q, Min W Q, Wang S H. Overview and prospect of image recognition technology for intelligent interaction [J]. Journal of Computer Research and Development, 2016, 53 (1): 113-122.
[13]金洋,王日新,徐敏强. 基于状态记忆的航天器自主故障诊断方法[J]. 系统工程与电子技术, 2015, 37(6): 1452-1458.
Jin Y, Wang R X, Xu M Q. Autonomous fault diagnosis method for spacecraft based on state memory [J]. Systems Engineering and Electronics, 2015, 37 (6): 1452-1458.
|