网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
变压器硅钢片下料问题的一种启发式算法
英文标题:A heuristic algorithm on blanking problem of transformer silicon steel sheet
作者:黎凤洁 陈燕 刘秋鹏 
单位:广西大学 
关键词:硅钢片 下料 整数规划 余料 余料利用率顺序修正 
分类号:TP391
出版年,卷(期):页码:2021,46(7):46-52
摘要:
针对变压器硅钢片下料问题,构建了以消耗材料最少为优化目标的下料问题整数规划优化模型,然后提出基于余料利用率顺序修正的下料算法求解该模型。算法采用合理有效的余料利用与生成策略,相同宽度的余料被认为是同种余料,通过约束余料的种类以及总数来避免库存积压,通过将同种宽度硅钢片进行拼接来提高材料利用率。与其他文献算法对比,证明了所提算法在保证运行时间合理的前提下,能有效地提高材料利用率。并通过运行生产实例进一步验证了算法的有效性。因此,所提算法可用于指导变压器硅钢片的下料环节,对提高企业经济效益有着重大的现实价值。
For the blanking problem of transformer silicon steel sheet, an integer programming optimization model for the blanking problem with the least material consumption as the optimization goal was established, and the model was solved by a blanking algorithm based on the sequential correction of remaining material utilization rate. Then, the algorithm adopted a reasonable and effective strategy for the utilization and generation of remaining material, and the remaining material with the same width was considered to be the same kind of remaining material. Furthermore, the inventory backlog was avoided by restricting the type and total number of the remaining material, and the material utilization was improved by splicing silicon steel sheets with the same width. Compared with the other published algorithm, it is proved that the proposed algorithm can effectively improve the material utilization ratio under the premise of ensuring reasonable running time, and the effectiveness of the algorithm is further verified by running a production example. Therefore, the proposed algorithm can be used to guide the blanking process of transformer silicon steel sheet, which has great practical value for improving the economic benefits of enterprises.
基金项目:
国家自然科学基金资助项目(71371058,61363026)
作者简介:
作者简介:黎凤洁(1993-),女,硕士研究生,E-mail:786631935@qq.com;通信作者:陈燕(1975-),女,教授,硕士生导师,E-mail:gxcy@foxmail.com
参考文献:
[1]李洪友, 张业辉. 节约变压器铁心硅钢片的方法[J]. 变压器, 2006, 43(1) : 26-30.
Li H Y, Zhang Y H. Method to save silicone plate in transformer core[J]. Transformer, 2006, 43(1) : 26-30.
[2]高宏武. 提高硅钢片利用率的方法(上) [J]. 变压器, 2005, 42(2) : 34-37.
Gao H W. Method to improve utilization coefficient of silicone steel plate[J]. Transformer, 2005, 42(2) : 34-37.
[3]高宏武. 提高硅钢片利用率的方法(下) [J]. 变压器, 2005, 42(3) : 22-27.
Gao H W. Method to improve utilization coefficient of silicone steel plate[J]. Transformer, 2005, 42(3) : 22-27.
[4]王雪红. 基于模拟退火遗传算法的变压器硅钢片优化排样的研究[D]. 长春:吉林大学, 2012.
Wang X H. Research of Packing Problem of Transformer Iron Core Based on Simulated Annealing Genetic Algorithm[D]. Changchun: Jilin University, 2012.
[5]陈燕, 龚俊舟, 朱苍璐, 等. 一种变压器硅钢片下料算法的设计与实现[J]. 合肥工业大学学报:自然科学版, 2019, 42(1) : 52-56.
Chen Y, Gong J Z, Zhu C L, et al. Design and realization of a silicon steel sheet cutting algorithm for transformer[J]. Journal of Hefei University of Technology: Natural Science, 2019, 42(1) : 52-56.
[6]Gerstl A, Karisch S E. Cost optimization for the slitting of core laminations for power transformers[J]. Annals of Operations Research, 1997, 69: 157-169.
[7]Arenales M, Cherri A, Nascimento D N, et al. A new mathematical model for the cutting stock/leftover problem[J]. Pesquisa Operacional, 2015, 35(3) : 509-522.
[8]Cui Y D, Yang Y L. A heuristic for the one-dimensional cutting stock problem with usable leftover[J]. European Journal of Operational Research, 2010, 204(2): 245-250.
[9]Cui Y D, Song X, Chen Y, et al. New model and heuristic solution approach for one dimensional cutting stock problem with usable leftovers[J]. Journal of the Operational Research Society, 2017, 68: 269-280.
[10]Andrade R, Birgin E G, Morabito R, et al. MIP models for two-dimensional non-guillotine cutting problems with usable leftovers[J]. Annals of Operations Research, 2013, 69: 157-169.
[11]Andrade R, Birgin E G, Morabito R. Two-stage two-dimensional guillotine cutting stock problems with usable leftovers[J]. International Transactions in Operational Research, 2016, 23(1-2): 121-145.
[12]Agrawal P K. Minimizing trim loss in cutting rectangular blanks of a single size form a rectangular sheet using orthogonal guillotine cuts [J]. European Journal of Operational Research, 1993, 64 (3): 410-422.
[13]Cui Y D. Dynamic programming algorithms for the optimal cutting of equal rectangles [J]. Applied Mathematical Modelling, 2005, 29 (11): 1040-1053.
[14]Arslanov M Z. Continued fractions in optimal cutting of a rectangular sheet into equal small rectangles [J]. European Journal of Operational Research, 2000, 125 (2): 239-248.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9