网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
辅助筋条厚度对2219陶铝材料数铣短壳壁板成形精度的影响
英文标题:Influence of auxiliary rib thickness on forming accuracy for CNC milling short shell panel of 2219 ceramic-aluminum material
作者:李继光 胡德友 王亚龙 杜百红 赵彦广 陈哲 
单位:天津航天长征火箭制造有限公司 上海交通大学 
关键词:2219陶铝材料 数铣短壳壁板 下压量 辅助筋条 相对弯曲半径 
分类号:TG386
出版年,卷(期):页码:2021,46(7):60-65
摘要:
以运载火箭贮箱用2219陶铝材料数铣短壳壁板为研究对象,通过分析产品结构特点,利用四轴滚弯方式分区成形凸台区及网格区,合理控制上、下轴夹持间距及下压量,探究航向上、下端辅助筋条厚度设计对成形工艺参数及型面精度影响的机制,以实现2219陶铝材料的工程化应用。结果表明:同等模块曲率半径下,辅助筋条厚度影响材料的塑性流动及相对弯曲半径,受到弯曲三向应力,制约成形工艺参数及产品精度。辅助筋条厚度为6 mm时比厚度为5 mm时产生更大比例的塑性变形,更容易达到成形曲率要求,影响显著,但对弧度成形精度影响较小。当数铣短壳壁板航向上、下端设有3条辅助筋条时,控制辅助筋条厚度为5 mm,可控制弧度间隙在2 mm以内、焊接区直线度在1.5 mm以内、网格区直线度在2.5 mm以内。
Taking the CNC milling short shell panel of 2219 ceramic-aluminum material in the launch vehicle tank as research object,through the analysis of product structure characteristics, the boss and grid areas were partitioned and formed by four-axis roll bending method, and the clamping gap of upper and lower shafts and the pressing amount were reasonably controlled. Then, the influence mechanism for the thickness of auxiliary ribs at the upper and lower ends of heading on the forming process parameters and the profile accuracy was explored to realize the engineering application of 2219 ceramic-aluminum material. The results show that the plastic flow of materials and the relative bending radius are influenced by the thickness of auxiliary ribs under the same radius of module curvature, and the forming process parameters and the product accuracy are restricted by three-dimensional stress in bending. In addition, when the thickness of auxiliary ribs is 6 mm, it produces a larger proportion of plastic deformation than that when the thickness is 5 mm, and it is easier to meet the requirements of forming curvature, which has a significant impact, but it has little effect on the arc forming accuracy. Finally, when there are three auxiliary ribs with the thickness of 5 mm at the upper and lower ends of heading for the CNC milling short shell panel, the arc gap clearance, the straightness of welding zone and the straightness of grid area are controlled within 2, 1.5 and 2.5 mm, respectively.
基金项目:
天津市科技支撑项目(17YFZCGX00530)
作者简介:
作者简介:李继光(1981-),男,博士,高级工程师,E-mail:jiguangli2008@126.com
参考文献:
[1]刘欣, 王国庆,李曙光,等. 重型运载火箭关键制造技术发展展望[J]. 航天制造技术,2013,(1):1-6.
Liu X,Wang G Q,Li S G,et al. Forecasts on crucial manufacturing technology development of heavy lift launch vehicle[J]. Aerospace Manufacturing Technology,2013(1):1-6.
[2]龙乐豪, 李平岐, 秦旭东,等. 我国航天运输系统60年发展回顾[J].宇航总体技术,2018,2(2):1-6.
Long L H, Li P Q, Qin X D,et al.The review on China space transportation system of past 60 years[J]. Astronautical Systems Engineering Technology, 2018, 2(2): 1-6.
[3]姚君山, 周万盛,王国庆,等. 航天贮箱结构材料及其焊接技术的发展[J]. 航天制造技术, 2002,(5): 17-22.
Yao J S, Zhou W S, Wang G Q,et al.The development structure of materials and their welding technology of space vehicle propellant tanks[J]. Aerospace Manufacturing Technology, 2002,(5): 17-22.
[4]Dinaharan I, Murugan N. Effect of friction stir welding on microstructure,mechanical and wear properties of AA6061/ZrB2 in situcast composites[J].Materials Science and Engineering: A,2012,543: 257-266.
[5]张荻, 张国定,李志强.金属基复合材料的现状与发展趋势[J]. 中国材料进展,2010,29(4): 1-7.
Zhang D, Zhang G D, Li Z Q. The current state and trend of metal matrix composites[J]. Materials China,2010,29(4): 1-7.
[6]Schaffer P L,Miller D N,Dahle A K. Crystallography of engulfed and pushed TiB2 particles in aluminium[J]. Scripta Materialia,2007,57(12): 1129-1132.
[7]于登云, 赖松柏,陈同祥.大型空间站整体壁板结构技术进展[J].中国空间科学技术,2011,31 (5): 31-40.
Yu D Y,Lai S B,Chen T X.Review on integral stiffened shell structure technology of large space station [J]. Chinese Space Science and Technology,2011,31 (5): 31-40.
[8]赖松柏, 陈同祥,于登云.整体壁板填料辅助滚弯成形的动力显式分析方法[J]. 航天器工程,2012,21 (3): 41-47.
Lai S B,Chen T X,Yu D Y. Dynamic explicit analysis method for roll bending forming of integrally stiffened panel with rubber filler[J]. Spacecraft Engineering,2012,21 (3): 41-47.
[9]韩志仁, 戴良景,张凌云. 飞机大型蒙皮和壁板制造技术现状综述[J]. 航空制造技术,2009,(4): 64- 66.
Han Z R, Dai L J, Zhang L Y. Current status of large aircraft skin and panel manufacturing technologies[J].Aeronautical Manufacturing Technology, 2009,(4):64-66.
[10]刘劲松, 张士宏, 曾元松,等. 网格式整体壁板增量成形有限元模拟[J] . 材料科学与工艺, 2004,12(5): 515-517
Liu J S,Zhang S H,Zeng Y S,et al. Simulation of incremental forming on integral panel skin with grid-type ribs [J]. Materials Science & Technology,2004,12 (5): 515-517.
[11]胡德友, 李继光,朱亚蓉,等.单侧轴倾斜角度对小锥角锥度壁板成形精度的影响[J] 锻压技术,2020,45(6): 59-63.
Hu D Y,Li J G,Zhu Y R,et al.Influence of the inclination angel of single-axis on the forming precision of the panel with small taper [J]. Forging & Stamping Technology,2020,45(6): 59-63.
[12]王艳, 朱新庆,胡捷飞,等.四辊卷板机连续滚弯成形工艺的数值模拟研究[J]. 系统仿真学报,2018,30(5):1772-1780.
Wang Y, Zhu X Q, Hu J F, et al. Research on numerical simulation of continuous roll forming process of four-roll plate bending machines[J]. Journal of System Simulation,2018,30(5): 1772-1780.
[13]余同希. 塑性弯曲理论及其应用[M]. 北京: 科学出版社,1992.
Yu T X. Plastic Bending Theory and Its Application[M]. Beijing: Science Press,1992.
[14]俞汉清, 陈金德. 金属塑性成形原理[M]. 北京: 机械工业出版社, 1999.
Yu H Q, Chen J D. Fundamental of Metal Plastic Forming[M]. Beijing: China Machine Press, 1999.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9