生物质热压成型温度场离散元模拟
|
英文标题:Discrete element simulation on temperature field in biomass thermoforming |
作者:李震 于跃 于今 郝宇超 万涛 |
单位:内蒙古科技大学 |
关键词:生物质 离散元 热传递 致密成型 温度场 |
分类号:S216;TK6 |
出版年,卷(期):页码:2021,46(7):100-105 |
摘要:
|
温度是影响生物质致密成型过程及燃料成型品质的关键因素之一,针对其致密成型传热机理及能量转换过程,应用EDEM-API二次开发对致密成型过程中的温度变化规律进行研究。通过离散单元法仿真分析生物质模型瞬态温度场,探究致密成型过程中温升和传热特性的演化规律,同时,从生物质密度、粒径、各时间分布等方面分析热压成型过程中温度场的变化。结果表明:在相同条件下,随着生物质材料密度增加,传热效果越好;粒径的增加,导致热传递效果逐渐减弱,粒径为Φ0.5 mm的生物质温升最快;传热过程中,压缩阶段的温度变化较大,保压阶段的温度变化平缓,生物质外部颗粒温度呈现梯度递减趋势并向内部传递。
|
Temperature is one of the key factors affecting the dense molding process of biomass and the quality of fuel molding, and for the heat transfer mechanism and energy conversion process of the dense molding, the temperature change law during the dense molding process was studied and analyzed by the secondary development of EDEM-API. Then, the transient temperature field of the biomass model was simulated and analyzed by the discrete element method to explore the evolution law of temperature rise and heat transfer characteristics in the process of the dense molding, and the change of temperature field in the thermaoforming process was analyzed by biomass density, particle diameter sizes, distribution for each time and other aspects. The results show that the heat transfer effect is better with the increasing of biomass density under the same conditions, and the increasing of particle diameter sizes leads to the gradual decrease in the heat transfer effect, but the biomass with the particle diameter size of 0.5 mm has the fastest temperature rise. In addition, in the process of heat transfer, the temperature changes greatly in the compression stage and gently in the pressure holding stage, and the external particles of biomass show a trend of temperature gradient decline to the internal transfer.
|
基金项目:
|
内蒙古自治区自然科学基金资助项目(2020LH05020);国家自然科学基金资助项目(51666016)
|
作者简介:
|
作者简介:李震(1973-),男,博士,教授,E-mail:lizhen_730106@126.com;通信作者:于跃(1994-),男,硕士研究生,E-mail:1214231191@qq.com
|
参考文献:
|
[1]Javed M A, Aslam U,Aslam Z, et al. Valorization of agricultural waste: Comparative study with focus on improving heating value of biomass[J]. Journal of Energy Engineer-ing,2020,146(4):0000672.https://doi.org/10.1061/(ASCE)EY.1943-7897. 0000672. [2]薛冬梅, 武佩,马彦华,等.生物质致密成型技术研究进展[J].安徽农业科学,2018,46(1):32-36,70. Xue D M, Wu P, Ma Y H, et al. Research progress on technologies of biomass densification[J]. Journal of Anhui Agricultural Sciences,2018,46(1):32-36,70. [3]李玉迪, 许宏光,荆成虎.闭式生物质热压成型传热模拟[J].哈尔滨工业大学学报,2018,50(7):30-37. Li Y D, Xu H G, Jing C H. Simulation of heat transfer model of closed biomass thermo-compression formation[J]. Journal of Harbin Institute of Technology,2018,50(7):30-37. [4]高名旺, 董玉平.生物质热压成型温度场数值模拟[J].可再生能源,2004,(2):23-25. Gao M W, Dong Y P. Numerical simulation of temperature field of biomass thermal compression[J]. Renewable Energy Resources,2004,(2):23-25. [5]李震, 王宏强,高雨航,等.沙柳生物质燃料颗粒致密成型粘结机理研究[J].农业工程学报,2019,35(21):235-241. Li Z, Wang H Q, Gao Y H, et al. Bonding mechanism of dense forming of salix biomass fuel particles[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(21):235-241. [6]景亮晶, 李瑞,邓旭升,等.木材热解过程中颗粒内部传热模型的探析[J].可再生能源,2011,29(6):81-85. Jing L J, Li R, Deng X S, et al. Investigation of the heat transfer model in a single wood particle during the pyrolysis process[J]. Renewable Energy Resources,2011,29(6):81-85. [7]祝清震, 武广伟,陈立平,等.小麦宽苗带撒播器弹籽板结构设计与优化[J].农业工程学报,2019,35(1):1-11. Zhu Q Z, Wu Z W, Chen L P, et al. Structural design and optimization of seed separated plate of wheat wide-boundary sowing device[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(1):1-11. [8]贾富国, 姚丽娜,韩燕龙,等.基于离散元法的糙米匀料盘仿真优化设计[J].农业工程学报,2016,32(4):235-241. Jia F G, Yao L N, Han Y L, et al. Simulation and optimal design of uniform plate of brown rice based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(4):235-241. [9]Feng S Z, Tao Y R, Ma Z J, et al. Transient nonlinear heat transfer analysis using a generic grid refinement for structure parameter variations[J]. International Journal of Thermal Sciences,2020,153:106357.https: //doi.org/10.1016/j.ijthermalsci.2020. 106357. [10]周勐, 樊健生,刘宇飞,等.北京大兴国际机场航站楼核心区钢网格结构日照非均匀温度场研究[J].工程力学,2020, 37(5):46-54,73. Zhou M, Fan J S, Liu Y F, et al. Analysis on non-uniform temperature field of stell grids of Beijing Daxing International Airport therminal building core area considering solar radiation[J]. Engineering Mechanics,2020,37(5):46-54,73. [11]Malinowski Z, Lenard J G, Davies M E. A study of the heat-transfer coefficient as a function of temperature and pressure[J]. Journal of Materials Processing Technology,1994,41(2): 125-142. [12]Chaudhuri B, Muzzio F J, Tomassone M S. Modeling of heat transfer in granular flow in rotating vessels[J]. Chemical Engineering Science, 2006, 61(19): 6348-6360. [13]崔金生. 采样钻具与月壤作用热力特性及温度场预测研究[D]. 哈尔滨:哈尔滨工业大学, 2016. Cui J S. Research on Mechanics-thermotics Characteristic of Drill-Lunar Regolith Interaction and Prediction of the Temperature Field[D]. Harbin: Harbin Institute of Technology,2016. [14]沈新悦, 董楠航.下降管反应器内颗粒流动升温过程数值研究[J].热科学与技术,2020,19(2):146-152. Shen X Y, Dong N H. Numerical study on the flow and heating process of particles in a downer reactor[J]. Journal of Thermal Science and Technology,2020,19(2):146-152. [15]熊杰, 樊烛,谢利平,等.AP1000核岛筏基大体积混凝土瞬态温度场数值分析[J].核科学与工程,2020,40(1):99-107. Xiong J, Fan Z, Xie L P, et al. Numerical analysis of mass concrete transient temperature field of AP1000 nuclear island raft foundation[J]. Nuclear Science and Engineering, 2020, 40(1):99-107.
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|