网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
加热温度对退火态2219铝合金板材力学性能的影响
英文标题:Influence of heating temperature on mechanical properties for annealed 2219 aluminum alloy sheet
作者:张下陆 李继光 赵鸿飞 杜百红 卢润卓 初冠南 
单位:天津航天长征火箭制造有限公司 哈尔滨工业大学(威海分校) 
关键词:2219铝合金 退火态 加热温度 力学性能 微观组织 
分类号:TG166.3
出版年,卷(期):页码:2021,46(7):129-133
摘要:
为了研究加热温度对退火态2219铝合金板材力学性能和微观组织的影响,在25~300 ℃温度范围内,对退火态2219铝合金板材进行单向拉伸试验。结果表明:退火态2219铝合金板材的强度随着加热温度的升高而降低,伸长率随着加热温度的升高显著增加,从室温状态下的31.50%升至300 ℃下的59.75%,塑性得到明显改善;退火态2219铝合金板材加热至一定温度再冷却至室温,然后进行固溶时效热处理,材料强度基本不发生变化,伸长率随加热温度的增加有所降低,从室温状态下的19.70%降至300 ℃下的15.04%,同时微观组织无明显差异,说明在一定温度范围内加热对2219铝合金板材的最终力学性能没有影响。
In order to study the influences of heating temperature on the mechanical properties and microstructure for annealed 2219 aluminum alloy sheet, the uniaxial tensile test of annealed 2219 aluminum alloy sheet was carried out in the temperature range of 25-300 ℃. The results show that the strength of annealed 2219 aluminum alloy sheet decreases with the increasing of heating temperature, and the elongation increases significantly with the increasing of heating temperature from 31.50% at room temperature to 59.75% at 300 ℃, so the plasticity is significantly improved. However, after annealed 2219 aluminum alloy sheet is heated to a certain temperature and then cooled to the room temperature, and then subjected to solution aging heat treatment, the strength of material does not change basically, and the elongation decreases with the increasing of heating temperature from 19.70% at room temperature to 15.04% at 300 ℃. At the same time, there is no significant difference in microstructure, indicating that heating within a certain temperature range has no effect on the final mechanical properties of 2219 aluminum alloy sheet.
基金项目:
作者简介:
张下陆(1985-),男,硕士,工程师,E-mail: zxl613@126.com
参考文献:
[1]鄢东洋, 郭彦明, 董曼红. 贮箱结构用2A14和2219 铝合金的特性研究与分析[J]. 导弹与航天运载技术, 2019, (3): 102-107.
Yan D Y, Guo Y M, Dong M H. Analysis and discuss on the characteristics of 2A14 and 2219 aluminum alloy used in the rocket tank [J]. Missiles and Space Vehicles, 2019, (3): 102-107.
[2]姚君山, 周万盛,王国庆,等. 航天贮箱结构材料及其焊接技术的发展[J]. 航天制造技术,2002,10(5):17-22.
Yao J S, Zhou W S, Wang G Q, et al. The development of materials and welding technology of the tank[J].Aerospace Manufacturing Technology, 2002, 10(5): 17-22.
[3]刘合军, 郎利辉, 李涛. 铝合金板材温热成形性能[J]. 塑性工程学报, 2009, 16(3): 145-148.
Liu H J, Lang L H, Li T. Investigation of formability of aluminum alloy sheet at elevated temperature [J]. Journal of Plasticity Engineering, 2009, 16(3): 145-148.
[4]郭亮, 湛利华. 6061-T6铝合金板材热冲压成形极限图研究[J]. 热加工工艺, 2017, 46(5): 131-134.
Guo L, Zhan L H. Study on forming limit diagram of hot stamping of 6061-T6 aluminum alloy sheet[J]. Hot Working Technology, 2017, 46(5): 131-134.
[5]徐勇, 靳鹏飞, 田亚强. 铝合金局部热处理技术及其在板材成形中的应用发展现状[J].材料工程, 2018, 46 (5):44-55.
Xu Y, Jin P F,Tian Y Q. Development status of tailored heat treatment technology and its application on sheet metal forming of aluminum alloys[J]. Journal of Materials Engineering, 2018, 46 (5): 44-55.
[6]刘俊伟. Mg-Al-Zn系合金板材中低温变形研究[D].长沙: 湖南大学, 2009.
Liu J W. Deformation Characteristics of Mg-Al-Zn Magnesium Alloy Sheets in Moderate Temperatures [D]. Changsha: Hunan University, 2009.
[7]孙中刚, 郭旋, 刘红兵,等. 铝锂合金先进制造技术及其发展趋势[J]. 航空制造技术, 2012, 20(5): 60-63.
Sun Z G, Guo X, Liu H B, et al. Development trend of advanced manufacturing technology for aluminum-lithium alloy [J]. Aeronautical Manufacturing Technology, 2012, 20(5), 60-63.
[8]Finch D M, Wilson S P, Dorn J E. Deep drawing aluminum alloy at elevated temperatures-Part I: Deep drawing cylindrical cups[J]. Transaction ASM, 1946, (36): 254-289.
[9]Finch D M, Wilson S P, Dorn J E. Deep drawing aluminum alloy at elevated temperatures-Part II: Deep drawing boxes[J]. Transaction ASM, 1946, (36): 290-310.
[10]Bolt P J, Lamboo N A P M, Rozier P J C M. Feasibility of warm drawing of aluminum products [J]. Material Processing Technology, 2001, 115: 118-121.
[11]Aginagalde A, Orus A, Esnaola J A, et al. Warm hydroforming of light-weight metal sheet [J]. Materials Processing and Design: Moldeling, Simulation and Applications, 2007, 908(1): 1175-1180.
[12]GB/T 4338—2006,金属材料高温拉伸试验方法 [S].
GB/T 4338—2006,Metallic materials—Tensile testing at elevated temperature [S].
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9