摘要:
|
为了提高非等原子比高熵合金(Fe50Ni30Co10Cr10)的力学性能,在该合金中加入B元素作为间隙增强原子,对其进行变形处理与退火后,实现了对该合金显微组织的精确调控,并分析了经过不同时间与温度退火处理后该合金发生的再结晶转变过程。研究结果表明:FeCoCrNi高熵合金在添加B元素后会引起σ相温度发生小幅下降,随着温度逐渐下降,在574 ℃时生成了Cr5B3相。铸态试样内含有fcc基体相与Cr5B3第二相两种物相结构。在变形量较小状态下,晶粒外形主要以树枝晶形态为主,晶内组织发生了滑移,形成了明显的台阶外形;变形量达到50%后,晶粒明显拉长,形成了扭折带变形组织,树枝晶结构已逐步转变为扁平状组织;随着变形量增加,晶粒尺寸逐渐减小,晶粒明显细化。当退火时间达到30 min时,形成的晶粒尺寸与退火时间为10 min的晶粒尺寸存在明显差异,并未出现晶粒长大的情况,等轴晶内也同样形成了大量的hcp板条组织。
|
In order to improve the mechanical properties of high entropy alloy (Fe50Ni30Co10Cr10) with non-equal atomic ratio, B element was added to the alloy as a clearance enhancement atom. After the deformation treatment and annealing, the precise control of the alloy microstructure was realized, and the recrystallization transformation processes of the alloy after annealing at different times and temperatures were analyzed. The results show that the addition of B element to FeCoCrNi high entropy alloy causes a small drop in the temperature of σ phase, and with the gradual decreasing of the temperature, Cr5B3 phase is formed at 574 ℃. Furthermore, the as-cast sample contains two phase structures with the fcc matrix phase and the Cr5B3 second phase. In the state of small deformation, the grain shape is mainly dendritic, and the intragranular structure slips to form the obvious step shape. After the deformation reaches 50%, the grains are obvious elongated to form the deformation structure of the twisted band, and the dendritic structure gradually changes into a flat structure. With the increasing of deformation amount, the grain size gradually decreases, and the grains are obviously refined. When the annealing time reaches 30 min, the grain size formed is significantly different from the grain size annealed at the annealing time of 10 min without the condition of grain growth, and a large number of hcp lath structures are also formed in the equiaxed grains.
|
基金项目:
|
河南省科技攻关计划项目(142102310526);河南省教育厅项目(201706207)
|
作者简介:
|
作者简介:刘世平(1979-),男,硕士,讲师,E-mail:liushiping79@163.com
|
参考文献:
|
[1]陈扬, 涂坚, 张琰斌, 等. 形变和退火对Fe(47)Mn(30)Co(10)Cr(10)B3间隙高熵合金微观组织结构演变的影响[J]. 材料研究学报, 2021, 35(2): 143-153. Chen Y, Tu J, Zhang Y B, et al. Effect of deformation and annealing on microstructure evolution of Fe(47)Mn(30)Co(10)Cr(10)B3 interstitial high entropy alloy [J].Journal of Materials Research, 2021, 35(2): 143-153. [2]杨恬, 许军锋, 李卓. 高强韧共晶高熵合金的研究进展[J]. 金属热处理, 2021, 46(2): 1-7. Yang T, Xu J F, Li Z. Research progress of high strength and toughness eutectic high entropy alloy[J]. Heat Treatment of Metals, 2021, 46(2): 1-7. [3]黄蕾, 郝雪卉, 赵性川, 等. 高温退火对AlCrFeNiTi高熵合金组织和性能的影响[J]. 材料热处理学报, 2021, 42(1): 91-96. Huang L, Hao X H, Zhao X C, et al. Effect of high temperature annealing on microstructure and properties of AlCrFeNiTi high entropy alloy [J].Journal of Materials and Heat Treatment, 2021, 42(1): 91-96. [4]薛彦均, 尉文超, 王毛球, 等. 退火温度对FeMoCrVTiSix高熵合金组织及力学性能的影响[J]. 金属热处理, 2020, 45(12): 7-12. Xue Y J, Wei W C, Wang M Q, et al. Effect of annealing temperature on microstructure and mechanical properties of FeCoCrVTiSix high entropy alloy [J].Heat Treatment of Metals, 2020, 45(12): 7-12. [5]Wang J L, Huang M H, Xi X H, et al. Characteristics of nucleation and transformation sequence in deformation-induced martensitic transformation [J]. Materials Characterization, 2020, 163: 110234 [6]He Z F, Jia N, Ma D, et al. Joint contribution of transformation and twinning to the high strength-ductility combination of a FeMnCoCr high entropy alloy at cryogenic temperatures [J]. Materials Science and Engineering:A, 2019, A759: 437-447. [7]吕昭平, 蒋虽合, 何骏阳, 等. 先进金属材料的第二相强化[J]. 金属学报, 2016, 52(10): 1183-1198. Lu Z, Jiang S, He J Y, et al. Second phase strengthening in advanced metal materials [J]. Acta Metallurgica Sinica, 2016, 52(10): 1183-1198. [8]Wang Z, Baker I, Cai Z, et al. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40. 4Ni11. 3Mn34. 8Al7. 5Cr6 high entropy alloys [J]. Acta Materialia, 2016, 120: 228-239. [9]Guo W, Su J, Lu W, et al. Dislocation-induced breakthrough of strength and ductility trade-off in a non-equiatomic high-entropy alloy [J]. Acta Materialia, 2020, 185: 45-54. [10]李航, 李杰, 褚延朋, 等. 冷轧退火对FeMnCoCrAl高熵合金组织和力学性能的影响[J]. 金属热处理, 2020, 45(11): 105-114. Li H, Li J, Chu Y P, et al. Effect of cold rolling annealing on microstructure and mechanical properties of high entropy FeMnCoCrAl alloy [J].Heat Treatment of Metals, 2020, 45(11): 105-114. [11]李延超, 李来平, 高选乔, 等. 难熔高熵合金研究进展[J]. 稀有金属材料与工程, 2020, 49(12): 4365-4372. Li Y C, Li L P, Gao X Q, et al. Research progress of refractory high entropy alloys[J]. Rare Metal Materials and Engineering, 2020, 49(12): 4365-4372. [12]王文文, 田权伟, 王轶农. 退火对冷轧Al(0.2)CoCrFe2Ni高熵合金组织和力学性能的影响[J]. 金属热处理, 2020, 45(11): 132-138. Wang W W, Tian Q W, Wang Y N. Effect of annealing on microstructure and mechanical properties of cold-rolled Al(0.2)-CoCrFe2Ni high entropy alloy [J].Heat Treatment of Metals, 2020, 45(11): 132-138. [13]李安敏, 王美华, 史君佐, 等. 锻造对FeMnCrCoNi高熵合金组织与性能的影响[J]. 锻压技术, 2019, 44(2): 173-181. Li A M, Wang M H, Shi J Z, et al. Effect of forging on microstructure and properties of high entropy FeMnCrCoI alloy [J]. Forging & Stamping Technology, 2019, 44(2): 173-181. [14]Lei Z F, Wu Y, He J Y, et al. Snoek-type damping performance in strong and ductile high-entropy alloys [J]. Science Advances, 2020, 6(25): eaba7802. [15]Seol J B, Bae J W, Li Z, et al. Boron doped ultrastrong and ductile high-entropy alloys [J]. Acta Materialia, 2018, 151: 366-376.
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|