摘要:
|
研究了挤压态镍黄铜HNi55-7-4-2合金高温本构模型的修正方法及其变形激活能的演化规律,对HNi55-7-4-2合金进行不同变形温度(873~1073 K)及应变速率(0.01~10 s-1)条件下的等温热压缩实验,获取了HNi55-7-4-2合金的流动应力-流动应变曲线。基于材料参数和变形激活能对变形条件的依赖,构建了一种考虑变形条件对材料参数影响的修正本构模型。经验证,修正本构模型能很好地预测HNi55-7-4-2合金的高温流动应力,其预测精度高。在不同变形条件下应用修正本构模型计算变形激活能,变形激活能受到变形温度、应变速率和变形量的综合影响,其变化范围在119.0~173.2 kJ·mol-1之间。此外,变形激活能随着变形温度的增加而降低,随着应变速率的增加先降低后升高。
|
The modification method of high temperature constitutive model and the evolution law of deformation activation energy for extruded nickel brass HNi55-7-4-2 alloy were studied, and the isothermal hot compression experiments under different deformation temperatures of 873-1073 K and strain rates of 0.01-10 s-1 for HNi55-7-4-2 alloy were performed to obtain the flow stress-flow strain curves. Then, based on the dependence of material parameters and deformation activation energy on the deformation conditions, a modified constitutive model considering the influences of deformation conditions on the material parameters was constructed. The verification shows that the modified constitutive model predicts the high temperature flow stress of HNi55-7-4-2 alloy with high prediction accuracy, and the modified constitutive model is used to calculate the deformation activation energies under different deformation conditions. In addition, the deformation activation energy is affected by the deformation temperature, strain rate and deformation amount, the variation range is 119.0-173.2 kJ·mol-1, and the deformation activation energy decreases with the increasing of the deformation temperature and first decreases and then increases with the increasing of the strain rate.
|
基金项目:
|
国家自然科学青年基金项目(51905232)
|
作者简介:
|
作者简介:尹小燕(1984-),女,硕士,讲师,E-mail:297527795@qq.com
|
参考文献:
|
[1]梁强, 张贤明, 李平, 等. 基于修正Arrhenius模型和SVR-PSO模型的HNi55-7-4-2合金高温本构模型的对比[J]. 材料热处理学报,2020,41(8):157-165. Liang Q, Zhang X M, Li P, et al. Comparative of high-temperature constitutive model of HNi55-7-4-2 alloy based on modified Arrhenius model and SVR-PSO model [J]. Transactions of Materials and Heat Treatment, 2020, 41(8):157-165. [2]马斌, 李平, 梁强, 等. 同步器齿环用HNi55-7-4-2合金高温本构模型构建及应用[J]. 材料热处理学报, 2020, 41(12):146-155. Ma B, Li P, Liang Q, et al. Construction and application of high-temperature constitutive model of HNi55-7-4-2 alloy for synchronizer gear ring [J]. Transactions of Materials and Heat Treatment, 2020, 41(12):146-155. [3]Gao X, Wu H B, Tang D, et al. Six different mathematical models to predict the hot deformation behavior of C71500 cupronickel alloy [J].Rare Metal Materials and Engineering,2020,49(12):4129-4141. [4]Zhang T, Zhang S H, Li L, et al. Modified constitutive model and workability of 7055 aluminium alloy in hot plastic compression [J]. Journal of Central South University, 2019, 26(11): 2930-2942. [5]Wang M H, Yang Y C, Tu S L, et al. A modified constitutive model and hot compression instability behavior of Cu-Ag alloy [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(4): 764-774. [6]Liu L, Wu Y X, Gong H, et al. Modification of constitutive model and evolution of activation energy on 2219 aluminum alloy during warm deformation process [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(3): 448-459. [7]韩茂盛, 马博荣, 罗皓. 铁白铜合金热压缩应力-应变关系的变参数Arrhenius模型研究[J]. 锻压装备与制造技术, 2019,54(3):134-139. Han M S, Ma B R, Luo H. Study on variable parameter Arrhenius model of thermal compression stress-strain relationship of Cu-Ni-Fe alloy [J]. China Metalforming Equipment & Manufacturing Technology, 2019, 54(3): 134-139. [8]Mohamadizadeh A, Zarei-Hanzaki A, Abedi H R . Modified constitutive analysis and activation energy evolution of a low-density steel considering the effects of deformation parameters [J]. Mechanics of Materials, 2016, 95(3): 60-70. [9]Lin Y C, Chen X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working [J]. Materials & Design, 2011, 32(4):1733-1759. [10]陈莹, 党淑娥, 马玉霞, 等. Cu-Cr-Zr合金高温热变形行为[J].锻压技术,2020, 45(2): 198-202. Chen Y, Dang S E, Ma Y X, et al. High temperature thermal deformation behavior of Cu-Cr-Zr alloy [J]. Forging & Stamping Technology, 2020, 45(2): 198-202. [11]李鸿江, 于洋, 宋晓云,等. 新型Ti-6554钛合金热变形行为及热加工图[J].稀有金属, 2020, 44(5): 462-468. Li H J, Yu Y, Song X Y, et al. Thermal deformation behavior and processing map of a new type of Ti-6554 alloy[J]. Chinese Journal of Rare Metals, 2020, 44(5): 462-468. [12]李周兵, 沈健, 闫亮明, 等. 应变速率对7055铝合金显微组织和力学性能的影响[J]. 稀有金属, 2010,34(5):643-647. Li Z B, Shen J, Yan L M, et al. Influence of hot process strain rate on microstructures and tensile properties of 7055 aluminum alloy [J]. Chinese Journal of Rare Metals, 2010, 34(5):643-647. [13]于金程, 董芳, 徐年宝,等. 高温高应变率下EW75镁合金动态压缩性能与组织演变[J]. 稀有金属, 2019, 43(2): 141-150. Yu J C, Dong F, Xu N B, et al. Dynamic compressive properties and microstructural evolution of EW75 magnesium alloy at high temperatures and high strain rates [J]. Chinese Journal of Rare Metals, 2019, 43(2): 141-150. [14]易蒲淞, 郭鹏,李文彬,等. 挤压铸造6082铝合金的高温流变行为和变形激活能分析[J].精密成形工程,2020,12(5):81-87. Yi P S, Guo P, Li W B, et al. High temperature flow behavior and deformation activation energy of 6082 aluminum alloy fabricated by squeeze casting [J]. Journal of Netshape Forming Engineering, 2020, 12(5): 81-87.
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|