网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
6016-T4铝合金预警器支架翻边开裂的数值模拟及优化
英文标题:Numerical simulation and optimization on flange cracking of early warning device bracket for 6016-T4 aluminum alloy
作者:许海丽 雷声 贾卫星 樊文涛 陈从升 刘亚峰 
单位:安徽建筑大学 安徽省工程机械智能制造重点实验室 安徽福达汽车模具有限公司 
关键词:6016-T4铝合金 翻边成形 开裂 正交试验 减薄 
分类号:TG389
出版年,卷(期):页码:2021,46(8):62-69
摘要:

 为了解决6016-T4铝合金安全带预警器支架开裂的问题,首先,分析安全带预警器支架的结构特点、冲压工艺和板料性能,基于Dynaform有限元软件对预警器支架进行全过程模拟,确定开裂的位置,并分析零件开裂的原因;然后,将OP30翻边成形工序的凹模圆角半径由初始的5.5 mm增大至8.0 mm,解决了支架开裂问题;再通过4因素3水平的正交试验,研究OP30翻边成形工序中冲压速度、压边力、摩擦因数及凹凸模间隙对评估指标最大减薄率影响的重要性程度关系,得出优化后的工艺参数组合;最后,进行了仿真验证,结果显示:采用增大后的圆角半径,并结合优化后的工艺参数组合可以有效地将支架厚度控制在1.679~3.018 mm,大大降低了板料的减薄率,并且支架未出现开裂现象,便于后续的稳定量产。

 In order to solve the cracking problem of seat belt early warning device bracket for 6016-T4 aluminum alloy, first of all, the structural characteristics, stamping process and material performance of seat belt early warning device bracket were analyzed, and based on the finite element software Dynaform, the whole process of early warning bracket was simulated to determine the cracking position and analyze the cause of part cracking. Then, the die fillet radius of OP30 flanging process was increased from the initial 5.5 to 8.0 mm to solve the cracking problem of bracket. Through the orthogonal test of four factors and three levels, the importance degree relationships for the influence of stamping speed, blank holder force, friction coefficient and clearance between die and punch on the maximum thinning rate of evaluation index in OP30 flanging process were studied, and the optimum combination of process parameters was obtained. Finally, the simulation verification result shows that the thickness of bracket is effectively controlled within 1.679-3.018 mm by increasing the fillet radius combined with the optimized process parameter combination, which greatly reduces the thinning rate of sheet metal, and there is no cracking phenomenon in the bracket, which is convenient for subsequent stable mass production.

基金项目:
安徽省高校省级自然科学研究项目-重大项目(KJ2020ZD42)
作者简介:
许海丽(1996-),女,硕士研究生 E-mail:2410867501@qq.com 通信作者:雷声(1964-),男,博士,教授,硕士生导师 E-mail:leish1964@vip.126.com
参考文献:

 
[1]赵广涛, 袁志鹏,吴彦骏.QP980钢后纵梁冲压工艺优化
[J].锻压技术,2020,45(4):62-69.


 

Zhao G T, Yuan Z P, Wu Y J. Optimization of stamping process for QP980 steel rear side member
[J]. Forging & Stamping Technology, 2020, 45 (4): 62-69.

 


[2]陈泽中, 刘欢,谢洪昊,等.22MnMoB钢汽车后地板横梁热冲压成形数值模拟和工艺研究
[J].塑性工程学报,2020,27(2):13-20.

 

Chen Z Z, Liu H, Xie H H, et al. Numerical simulation and process analysis of 22MnMoB steel in hot stamping for automobile rear floor crossmember
[J]. Journal of Plasticity Engineering, 2020, 27 (2):13-20.

 


[3]刘文杰, 雷声.汽车纵梁成形回弹及补偿
[J].精密成形工程,2019,11(3):127-132.

 

Liu W J, Lei S. Forming springback and compensation of auto girder
[J]. Journal of Netshape Forming Engineering, 2019, 11 (3): 127-132.

 


[4]徐肖, 黄涛,王震.基于CAE的典型前围板下横梁冲压成形工艺
[J].锻压技术,2019,44(8):26-35. 

 

Xu X, Huang T, Wang Z. Stamping process of typical front beam connecting part based on CAE
[J]. Forging & Stamping Technology, 2019, 44 (8): 26-35.

 


[5]周建明, 付延宜.冷轧板汽车冲压件开裂和裂纹缺陷的原因及预防
[J].南方金属,2019,(6):39-41.

 

Zhou J M, Fu Y Y. Causes and prevention of cracking and crack defects in cold rolled automobile stamping parts
[J]. Southern Metals, 2019,(6): 39-41.

 


[6]臧其其, 闫华军,张双杰,等.基于Dynaform的铝合金汽车地板梁成形分析及工艺参数优化
[J].塑性工程学报,2019,26(2):125-131.

 

Zang Q Q, Yan Q H, Zhang S J, et al. Forming analysis and process parameters optimization for automobile aluminum alloy floor beam based on Dynaform
[J]. Journal of Plasticity Engineering, 2019, 26 (2): 125-131.

 


[7]郭宏伟. 基于QForm的轻量化汽车铝型材热挤压成形仿真
[J].热加工工艺,2019,48(9):158-161.

 

Guo H W. Hot extrusion forming simulation of lightweight automotive aluminum profiles based on QForm
[J]. Hot Working Technology, 2019, 48 (9): 158-161.

 


[8]宋吉海. 汽车零件翻边开裂和挤料问题分析与解决方案
[J].模具制造,2019,19(2):11-13.

 

Song J H. Analysis and solution of flanging and bending cracking and extruding problems for automobile part
[J]. Die & Mould Manufacture, 2019,19(2):11-13.

 


[9]高文平. 基于DYNAFORM的左后轮罩内板冲压成形过程模拟
[D].长春:吉林大学,2014.

 

Gao W P. Simulation of Forming Process for the Inner Panel of Vehicle Real Wheel Cover Based on DYNAFORM
[D]. Changchun:Jilin University, 2014.

 


[10]陈剑, 戴南山,陈小龙,等.汽车下加强件前横梁冲压成型工艺模拟仿真及优化研究
[J].机械工程师,2020,(1):72-75.

 

Cheng J, Dai N S, Cheng X L, et al. Simulation and optimization research on stamping forming process of front beam in automobile lower reinforcement
[J]. Mechanical Engineer, 2020,(1): 72-75.

 


[11]栾彭翔. 汽车后门外板成形仿真分析及工艺参数优化
[D].济南:山东大学,2018.

 

Luan P X. Forming Simulation Analysis and Optimization of Process Parameters for Automobile Outboard Panel
[D]. Jinan:Shandong University, 2018.

 


[12]刘新东. 基于Dynaform汽车后桥壳成形过程的数值模拟与优化
[D].柳州:广西科技大学,2014.

 

Liu X D. Numerial Simulation and Optimization of Car Rear Axle Forming Processes Based on Dynaform
[D]. Liuzhou:Guangxi University of Science and Technology, 2014.

 


[13]张勇, 范轶,薛洋.基于Dynaform和正交试验的轿车加强梁冲压工艺参数优化
[J].锻压技术,2019,44(2):37-42.

 

Zhang Y, Fan Y, Xue Y. Optimization on stamping process parameters of car reinforced beam based on Dynaform and orthogonal test
[J]. Forging & Stamping Technology, 2019, 44 (2): 37-42.

 


[14]Dong W P, Wang Q C, Wang X M, et al. Stress analysis of cylindrical parts during deep drawing based on Dynaform
[J].IOP Conference Series: Materials Science and Engineering,2018,423(1):012166.

 


[15]田国富, 李文杰,李君基.基于Dynaform的6016-T4P铝合金汽车机舱盖模面优化
[J].锻压技术,2020,45(1):55-62.

 

Tian G F, Li W J, Li J J. Optimization on die face of engine compartment cover for 6016-T4P aluminum alloy based on Dynaform
[J]. Forging & Stamping Technology, 2020,45(1):55-62.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管 北京机电研究所有限公司 中国机械工程学会塑性工程分会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-62920652 +86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备09032115号-5