网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
机器视觉与工业机器人相结合的自动上料系统
英文标题:Automatic feeding system based on machine vision and industrial robot
作者:刘波 赵一冰 张南 安思健 张中琳 吴鑫波 张文远 
单位:北京机电研究所有限公司 一汽锻造有限公司 
关键词:机器视觉 坐标转换 工业机器人 柔性夹钳 锻造自动化 
分类号:TP249
出版年,卷(期):页码:2021,46(8):180-185
摘要:

 随着工业机器人和机器视觉技术的发展和应用,将二者相结合,研发出适合锻造工况的由机器视觉引导的机器人自动上料系统。该系统由工业机器人、电磁铁机构、视觉相机、控制系统和照明系统5部分组成,经过工况设定、拍照、数据处理、定位等流程,最终引导机器人从料箱自动抓取冷态的棒料,并搬运至锻造线加热单元。详细地说明了如何处理由于光线影响造成的拍照识别问题、机器人与视觉系统坐标系的标定与转换、视觉处理流程、夹持系统定位与容错处理、空抓问题的分析处理等。本系统在半年的应用过程中,经过不断地调整优化,取料成功率大于99%,应用结果证明了该系统具有可靠的稳定性和安全性。

 With the development and application of industrial robot and machine vision technologies, the robot automatic feeding system guided by machine vision suitable for forging conditions was developed by combining the two technologies, which was composed of industrial robot, electromagnet mechanism, visual camera, control system and lighting system. Through the processes of working condition setting, photographing, data processing and positioning, the robot automatically grabbed the cold-state bar from material box and transported it to the heating unit of forging line. Then, how to deal with the problem of photo identification caused by the influence of light, the calibration and conversion of coordinate system for robot and vision system, the visual processing process, the positioning and fault tolerance processing of clamping system, and the analysis and processing of empty grip problem, etc. were described in detail. Furthermore, the system continuously adjusted and optimized during the half-year application process, and the success rate of reclaiming was more than 99%. The application results show that the system has reliable stability and safety.

基金项目:
作者简介:
刘波(1980-),男,学士,高级工程师 E-mail:lbshoulder@163.com
参考文献:

[1]白硕. PROFINET技术的研究与开发
[D]. 北京:北京化工大学,2010.

 

Bai S.The Research and Development of PROFINET Technology
[D].Beijing:Beijing University of Chemical Technology,2010.

 


[2]蒋鹏, 孙勇. 锻造自动化技术应用进展及改造建议
[J]. 金属加工,2014,21(11):6-7.

 

Jiang P, Sun Y. Application progress and modification suggestion of forging automation technology
[J]. Metal Working, 2014,21(11):6-7.

 


[3]张国栋, 王有春. PROFINET的实时性及其协议分析
[J]. 计算机测量与控制,2017,25(3):188-189.

 

Zhang G D,Wang Y C.Analysis of real-time performance and protocol based on PROFINET
[J].Computer Measure & Control,2017,25(3):188-189.

 


[4]凌云汉, 邵光保,孙勇,等. 基于机器视觉的锻件位置及顶杆检测系统
[J]. 锻压技术,2018, 43(5):115-119,136.

 

Ling Y H, Shao G B,Sun Y,et al. Detection system of forging position and ejector based on machine vision
[J]. Forging & Stamping Technology, 2018, 43(5):115-119,136.

 


[5]张巧芬, 高健. 机器视觉中照明技术的研究进展
[J]. 照明工程学报,2011,22(2):32-36.

 

Zhang Q F, Gao J. Research progress of lighting technology in ma-chine vision
[J]. China Illuminating Engineering Journal, 2011,22(2):32-36.

 


[6]刘曙光, 刘明远,何钺,等. 机器视觉及其应用
[J]. 河北科技大学学报,2000,21(4):14-15.

 

Liu S G,Liu M Y, He Y,et al. The machine vision and its application
[J]. Journal of Hebei University of Science and Technology, 2000,21(4):14-15.

 


[7]李博文. 基于机器视觉的饮水机取水杯液位检测系统开发研究
[D].广州:华南理工大学,2019.

 

Li B W,Devolopment of the Machine Vision-based Liquid Level Detective System
[D]. Guangzhou:South China University of Technology, 2019.

 


[8]张琦. 机器视觉的原理及现状
[J]. 电子工业专用设备,1999,28(4):20-21,34.

 

Zhang Q. The principle and present situation of machine vision
[J]. Equipment for Electronic Products Manufacturing, 1999, 28(4):20-21,34.

 


[9]何勇, 孙钊,李华夏.机器视觉技术及其在机械制造自动化的应用
[J].黑龙江科技信息,2016,(24):119.

 

He Y,Sun Z,Li H X. Machine vision technology and its application in mechanical manufacturing automation
[J]. Heilongjiang Science and Technology Information, 2016,(24):119.

 


[10]何鹏, 潘鑫,汪雪聪,等. 基于机器视觉的SCARA机器人的应用
[J]. 机械工程师,2016,(10):73-75.

 

He P, Pan X, Wang X C,et al. Application of SCARA robot based on machine vision technology
[J]. Mechanical Engineer, 2016,(10):73-75.

 


[11]刘振宇, 李中生,冯柏润,等. 机器视觉在工业生产线上的应用实现
[J]. 微型机与应用,2013,32(17):27-30.

 

Liu Z Y, Li Z S, Feng B R,et al. Realization of machine vision in industrial production line
[J]. Microcomputer & Its Applications, 2013,32(17):27-30.

 


[12]陈洋, 张林. 工业视觉检测系统及应用
[J]. 科技展望,2015,16(1):119,121.

 

Chen Y, Zhang L. Industrial vision inspection system and its application
[J].Technology Outlook, 2015,16(1):119,121.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9