[1]左倩, 刘剑, 兰乔, 等. 塑料模具钢S136与Fs136的退火/淬火组织及力学性能对比 [J]. 材料热处理学报, 2016, 37(12): 93-99.
Zuo Q, Liu J, Lan Q, et al. Microstructure and mechanical properties of plastic mould steels S136 and Fs136 [J]. Transactions of Materials and Heat Treatment, 2016, 37(12): 93-99.
[2]王迪, 杨树峰, 曲敬龙, 等. GH4169电渣重熔铸锭表层夹杂物分布规律 [J]. 钢铁, 2020, 56(2): 155-164.
Wang D, Yang S F, Qu J L, et al. Distribution of inclusions on surface onf GH4169 ESR ingot [J]. Iron & Steel, 2020, 56(2): 155-164.
[3]朱学超, 魏青松, 孙春华. 激光选区熔化成形S136模具钢热处理组织和性能研究 [J]. 粉末冶金技术, 2019, 37(2): 83-90.
Zhu X C, Wei Q S, Sun C H. Study on microstructures and properties of S136 die steel formed by selective laser melting after heat treatment [J]. Powder Metallurgy Technology, 2019, 37(2): 83-90.
[4]ASTM E975—2013,Standard practice for X-ray determination of retained austenite in steel with near random crystallographic orientation [S].
[5]卢茜倩, 谷海容, 崔磊, 等. 退火温度对1000 MPa级Q&P钢组织性能及残余奥氏体的影响 [J]. 钢铁钒钛, 2020, 41(6): 130-134.
Lu Q Q, Gu H R, Cui L, et al. Effect of annealing temperature on microstructure,mechanical properties and retained austenite of 1000 MPa Q&P steel [J]. Iron Steel Vanadium Titanium, 2020, 41(6): 130-134.
[6]张敏, 刘明志, 张明, 等. 奥氏体化合金元素Mn和Ni对FV520B焊缝组织与力学性能的影响 [J]. 材料工程, 2016, 44(3): 40-45.
Liu M, Liu M Z, Zhang M, et al. Microstructure and mechanical properties of FV520B affected by austenitizing elements Mn and Ni [J]. Journal of Materials Engineering, 2016, 44(3): 40-45.
[7]李员妹, 孙新军, 李昭东, 等. Mn-Ni钢中逆转变奥氏体的稳定性 [J]. 金属热处理, 2016, 41(1): 111-115.
Li Y M, Sun X J, Li Z D, et al. Stability of reversed austenite in Mn-Ni steel [J]. Heat Treatment of Metals, 2016, 41(1): 111-115.
[8]冯英育. 工模具钢的韧性和延展性 [J]. 汽车工艺与材料, 2011, (12): 11-16.
Feng Y Y. Toughness and ductility of tool steel [J]. Automobile Technology and Materials, 2011, (12): 11-16.
[9]赵贤平, 邓深, 温小园, 等. 回火温度对低碳贝氏体钢Q590组织和冲击性能的影响 [J]. 宽厚板, 2021, 27(1): 45-48.
Zhao X P, Deng S, Wen X Y, et al. Effects of tempering temperature on microstructure and impact properties of Q590 low carbon high strength bainitic steel [J]. Wide and Heavy Plate, 2021, 27(1): 45-48.
[10]王桂. 回火温度对GCr15轴承钢组织和性能的影响 [J]. 失效分析与预防, 2016, 11(6): 361-363.
Wang G. Effect of tempering temperature on microstructure and properties of GCr15 bearing steel [J]. Failure Analysis and Prevention, 2016, 11(6): 361-363.
[11]张琪, 吴婷, 马孝会, 等. 回火温度对超高碳钢组织和力学性能的影响 [J]. 中国体视学与图像分析, 2019, 24(2): 152-159.
Zhang Q, Wu T, Ma X H, et al. Effect of tempering temperature on microstructure and mechanical properties of ultra-high carbon high strength steel [J]. Chinese Journal of Stereology and Image Analysis, 2019, 24(2): 152-159.
[12]李晴, 程巨强. 淬火后回火温度对20SiMn2Mo钢组织和性能的影响 [J]. 铸造技术, 2019, 40(8): 828-830.
Li Q, Cheng J Q. Effect of tempering temperature after quenching on microstructure and properties of 20SiMn2Mo steel [J]. Foundry Technology, 2019, 40(8): 828-830.
[13]詹放, 林田子, 阴树标, 等. 回火工艺对690 MPa级抗震耐火钢板组织和力学性能的影响 [J]. 昆明理工大学学报:自然科学版, 2020, 45(5): 26-34.
Zhan F, Lin T Z, Yin S B, et al. Effect of tempering process on microstructure and mechanical properties of 690 MPa grade anti-seismic fire-resistant steel plates [J]. Journal of Kunming University of Science and Technology:Natural Science, 2020, 45(5): 26-34.
[14]黄宗响, 陈建梅. 轴承尺寸稳定性试验分析 [J]. 轴承, 2003, 1(10): 29-30, 32.
Huang Z X, Chen J M. Experimental analysis of bearing dimensional stability [J]. Bearing, 2003, 1(10): 29-30, 32.
[15]韩庆礼, 刘国权, 向嵩, 等. 轴承钢的室温尺寸稳定性研究 [J]. 兵器材料科学与工程, 2007, 30(6): 38-41.
Han Q L, Liu G Q, Xiang S, et al. Dimension stability research of bearing steel at room temperature [J]. Ordnance Material Science and Engineering, 2007, 30(6): 38-41.
[16]李士燕, 刘秀芝, 何力力. 深冷处理对轴承稳定性影响的研究 [J]. 甘肃工业大学学报, 2001, 27(2): 17-19.
Li S Y, Liu X Z, He L L. Investigation of the influence of cryogenic treatment on the stabil ity of bearings [J]. Journal of Gansu University of Technology, 2001, 27(2): 17-19.
|