[1]Yuan S J, Fan X B. Developments and perspectives on the precision forming processes for ultra-large size integrated components [J]. International Journal of Extreme Manufacturing, 2019, 1(2):34-51.
[2]夏巨谌, 邓磊, 金俊松, 等. 我国精锻技术的现状及发展趋势 [J]. 锻压技术, 2019, 44(6): 1-16, 29.
Xia J C, Deng L, Jin J S, et al. Current situation and development trend of precision forging technology in China [J]. Forging & Stamping Technology, 2019, 44(6): 1-16, 29.
[3]赵明杰,黄亮,李建军,等. 大型飞机起落架模锻件锻透性研究 [J]. 锻压技术,2020,45(9):1-7.
Zhao M J,Huang L,Li J J,et al. Research on forgeability of die forgings for large aircraft landing gear [J]. Forging & Stamping Technology,2020,45(9):1-7.
[4]孔晓寒,陈慧琴,刘建生,等. 铸态Q345E钢的本构方程及动态再结晶行为[J]. 锻压技术,2020,45(11):199-204.
Kong X H,Chen H Q,Liu J S,et al. Constitutive equation and dynamic recrystallization behavior for as-cast Q345E steel [J]. Forging & Stamping Technology,2020,45(11):199-204.
[5]Lin Y C, Chen M S. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working [J]. Materials & Design, 2011, 32(4):1733-1759.
[6]Sellars C M. Modelling microstructural development during hot rolling[J]. Materials Science & Technology, 1990, 6:1072-1081.
[7]Sellars C M, Zhu Q. Microstructural modeling of aluminum alloys during thermomechaincal processing[J]. Materials Science & Engineering A, 2000, 280:1-7.
[8]Fan X G, Yang H. Internal-state-variable based self-consistent constitutive modeling for hot working of two-phase titanium alloys coupling microstructure evolution[J]. International Journal of Plasticity, 2011, 27(11):1833-1852.
[9]Sun Z C, Wu H L, Cao J, et al. Modeling of continuous dynamic recrystallization of Al-Zn-Cu-Mg alloy during hot deformation based on the internal-state-varaible (ISV) method [J]. International Journal of Plasticity, 2011, 106:73-87.
[10]Donati L, Segatori A, Mehtedi M E, et al. Grain evolution analysis and experimental validation in the extrusion of 6XXX alloys by use of a lagrangian FE code [J]. International Journal of Plasticity, 2013, 46 (3):70-81.
[11]Maizza G, Pero R, Richetta M, et al . Continuous dynamic recrsytallization (CDRX) model for aluminum alloys [J]. Journal of Materials Science, 2018, 53(6):4563-4573.
[12]Chen S F, Li D Y, Zhang S H, et al. Modelling continuous dynamic recrystallization of aluminum alloys based on the polycrystal plasticity approach [J]. International Journal of Plasticity, 2020, 131:102710.
[13]Li Y B, Gu B, Jiang S, et al. A CDRX-based material model for hot deformation of aluminium alloys [J]. International Journal of Plasticity, 2020, 134:102844.
[14]Zheng C W, Raabe D, Li D Z. Prediction of post-dynamic austenite-to-ferrite transformation and reverse transformation in a low carbon steel by cellular automaton modeling[J]. Acta Materialia, 2012, 60(12):4768-4779.
[15]Zheng C W, Raabe D. Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: A cellular automaton model[J]. Acta Materialia, 2013, 61(14): 5504-5517.
[16]Chen F, Zhu H J, Zhang H M, et al. Mesoscale modeling of dynamic recrystallization multilevel cellular automaton simulation framework [J]. Metallugical and Materials Transactions A, 2020, 51(3):1286-1303.
[17]Chen F, Zhu H J, Chen W, et al. Multiscale modeling of discontinuous dynamic recrystallization during hot working by coupling multilevel cellular automaton and finite element method [J]. International Journal of Plasticity, 2021, 145:103064.
[18]Zhu H J, Chen F, Zhang H M, et al. Review on modeling and simulation of microstructure evolution during dynamic recrystallizaiton using cellular automaton method[J]. Science China: Technology Sciences, 2020, 63(3): 357-396.
[19]Zhang J, Li H W, Sun X X, et al . A multi-scale MCCPFEM framework: Modeling of thermal interface grooving and deformation anisotropy of titanium alloy with lamellar colony [J]. International Jouarnal of Plasticity, 2020, 135(1):102804.
[20]朱华佳. 核电大锻件材料再结晶织构演变数值模拟方法 [D].上海:上海交通大学,2020.
Zhu H J. Research on Numerical Simulation Method of Recrystallization Texture Evolution of Nuclear Power Large Forgings [D]. Shanghai: Shanghai Jiao Tong University, 2020.
[21]崔振山, 陈文, 陈飞, 等. 大锻件控性锻造过程的计算机模拟技术 [J]. 机械工程学报, 2010, 46(11):2-8.
Cui Z S, Chen W, Chen F, et al. Computer modeling of property-controlled forging process for heavy forgings [J]. Journal of Mechanical Engineering, 2010, 46(11):2-8.
|