网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
金属材料热锻过程组织演化建模方法的新进展
英文标题:New progress on modeling methods of microstructure evolution in hot forging process of metallic materials
作者:陈飞 朱华佳 李佳航 崔振山 
单位:上海交通大学 模具CAD国家工程研究中心 
关键词:热锻  组织演变  宏观有限元模拟 多层级元胞自动机 再结晶织构大晶粒 
分类号:TG385
出版年,卷(期):页码:2021,46(9):16-21
摘要:

 简要阐述了金属材料热锻过程中组织演变的建模与模拟方法;着重介绍了宏观有限元-介观多层级元胞自动机集成模拟方法,该方法以位错密度为线索,根据应变/应变速率/温度-位错密度-再结晶-流动应力之间的宏微观相互影响规律,能够追踪在非均匀/非等温变形条件下,再结晶晶粒的形貌、尺寸和体积分数;同时,介绍了晶体塑性-多层级元胞耦合模拟方法,该方法以实际晶粒的取向为初始组织输入,采用晶体塑性描述晶粒内部变形的应变梯度,并将位错密度和晶粒取向映射到多层级元胞模型中,可以定量描述织构中大晶粒的形成;最后,较为简要地介绍了不锈钢核电大锻件的组织演变数值模拟-物理模拟方法,并归纳了几种方法的优缺点,展望了未来发展趋势。

 The modeling and simulation methods of microstructural evolution in hot forging process of metal material were briefly described, and the integrated simulation method of macroscale finite element and mesoscale multi-level cellular automation (MCA) was introduced emphatically. This method took the dislocation density as a clue, and according to the macro-microscopic interaction laws between “strain/strain rate/temperature-dislocation density-recrystallization-flow stress”, the morphology, size and completion score of recrystallized grains under non-uniform/non-isothermal deformation conditions were tracked. Then, the crystal plasticity-multi-level cell coupling simulation method was introduced. This method took the actual grain orientation as the initial structure input, used crystal plasticity to describe the strain gradient of the internal deformation of the grain and mapped the dislocation density and grain orientation to multi-level cell model, which quantitatively described the formation of large grains in the texture. Finally the numerical simulation-physical simulation method of the microstructure evolution for the nuclear power large forging of stainless steel was introduced briefly, the advantages and disadvantages of several methods were summarized, and the future development trend was prospecte

基金项目:
国家自然科学基金资助项目(51705316,U2037204)
作者简介:
陈飞(1982-),男,博士,特别研究员 E-mail:feichen@sjtu.edu.cn
参考文献:

 [1]Yuan S J, Fan X B. Developments and perspectives on the precision forming processes for ultra-large size integrated components [J]. International Journal of Extreme Manufacturing, 2019, 12:34-51.


 


[2]夏巨谌, 邓磊, 金俊松, . 我国精锻技术的现状及发展趋势 [J]. 锻压技术, 2019, 44(6): 1-16, 29.


 


Xia J C, Deng L, Jin J S, et al. Current situation and development trend of precision forging technology in China [J]. Forging & Stamping Technology, 2019, 44(6): 1-16, 29.


 


[3]赵明杰,黄亮,李建军,等. 大型飞机起落架模锻件锻透性研究 [J]. 锻压技术,2020,45(9):1-7.


 


Zhao M JHuang LLi J Jet al. Research on forgeability of die forgings for large aircraft landing gear [J]. Forging & Stamping Technology2020,45(9):1-7.


 


[4]孔晓寒,陈慧琴,刘建生,等. 铸态Q345E钢的本构方程及动态再结晶行为[J]. 锻压技术,2020,45(11):199-204.


 


Kong X HChen H QLiu J Set al. Constitutive equation and dynamic recrystallization behavior for as-cast Q345E steel [J]. Forging & Stamping Technology2020,45(11):199-204.


 


[5]Lin Y C, Chen M S. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working [J]. Materials & Design, 2011, 32(4):1733-1759.


 


[6]Sellars C M. Modelling microstructural development during hot rolling[J]. Materials Science & Technology, 1990, 6:1072-1081.


 


[7]Sellars C M, Zhu Q. Microstructural modeling of aluminum alloys during thermomechaincal processing[J]. Materials Science & Engineering A, 2000, 280:1-7.


 


[8]Fan X G, Yang H. Internal-state-variable based self-consistent constitutive modeling for hot working of two-phase titanium alloys coupling microstructure evolution[J]. International Journal of Plasticity, 2011, 27(11):1833-1852.


 


[9]Sun Z C, Wu H L, Cao J, et al. Modeling of continuous dynamic recrystallization of Al-Zn-Cu-Mg alloy during hot deformation based on the internal-state-varaible (ISV) method [J]. International Journal of Plasticity, 2011, 106:73-87.


 


[10]Donati L, Segatori A, Mehtedi M E, et al. Grain evolution analysis and experimental validation in the extrusion of 6XXX alloys by use of a lagrangian FE code [J]. International Journal of Plasticity, 2013, 46 (3):70-81.


 


[11]Maizza G, Pero R, Richetta M, et al . Continuous dynamic recrsytallization (CDRX) model for aluminum alloys [J]. Journal of Materials Science, 2018, 53(6):4563-4573.


 


[12]Chen S F, Li D Y, Zhang S H, et al. Modelling continuous dynamic recrystallization of aluminum alloys based on the polycrystal plasticity approach [J]. International Journal of Plasticity, 2020, 131:102710.


 


[13]Li Y B, Gu B, Jiang S, et al. A CDRX-based material model for hot deformation of aluminium alloys [J]. International Journal of Plasticity, 2020, 134:102844.


 


[14]Zheng C W, Raabe D, Li D Z. Prediction of post-dynamic austenite-to-ferrite transformation and reverse transformation in a low carbon steel by cellular automaton modeling[J]. Acta Materialia, 2012, 6012:4768-4779.


 


[15]Zheng C W, Raabe D. Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: A cellular automaton model[J]. Acta Materialia, 2013, 61(14): 5504-5517.


 


[16]Chen F, Zhu H J, Zhang H M, et al. Mesoscale modeling of dynamic recrystallization multilevel cellular automaton simulation framework [J]. Metallugical and Materials Transactions A, 2020, 51(3):1286-1303.


 


[17]Chen F, Zhu H J, Chen W, et al. Multiscale modeling of discontinuous dynamic recrystallization during hot working by coupling multilevel cellular automaton and finite element method [J]. International Journal of Plasticity, 2021, 145:103064.


 


[18]Zhu H J, Chen F, Zhang H M, et al. Review on modeling and simulation of microstructure evolution during dynamic recrystallizaiton using cellular automaton method[J]. Science China: Technology Sciences, 2020, 63(3): 357-396.


 


[19]Zhang J, Li H W, Sun X X, et al . A multi-scale MCCPFEM framework: Modeling of thermal interface grooving and deformation anisotropy of titanium alloy with lamellar colony [J]. International Jouarnal of Plasticity, 2020, 135(1):102804.


 


[20]朱华佳. 核电大锻件材料再结晶织构演变数值模拟方法 [D].上海:上海交通大学,2020.


 


Zhu H J. Research on Numerical Simulation Method of Recrystallization Texture Evolution of Nuclear Power Large Forgings [D]. Shanghai: Shanghai Jiao Tong University, 2020.


 


[21]崔振山, 陈文, 陈飞, . 大锻件控性锻造过程的计算机模拟技术 [J]. 机械工程学报, 2010, 46(11):2-8.


 


Cui Z S, Chen W, Chen F, et al. Computer modeling of property-controlled forging process for heavy forgings [J]. Journal of Mechanical Engineering, 2010, 46(11):2-8.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9