[1]Boyer R R. An overview on the use of titanium in the aerospace industry[J]. Materials Science and Engineering A, 1996, 213(1-2):103-114.
[2]Zhu C P, Peng G S, Lin Y C, et al. Effects of Mo and Cr contents on microstructures and mechanical properties of near β-Ti alloy[J]. Materials Science and Engineering: A, 2021, 825: 141882.
[3]Dong R F, Li J S, Fan J K, et al. Precipitation of α phase and its morphological evolution during continuous heating in a near β titanium alloy Ti-7333[J]. Materials Characterization, 2017, 132: 199-204.
[4]叶勇, 王金彦. 钛合金的应用现状及加工技术发展概况[J]. 材料导报, 2012, 26(s2): 360-363.
Ye Y, Wang J Y. An overview on application status and processing technology development of titanium alloy[J]. Materials Reports, 2012, 26(s2): 360-363.
[5]Jiang Y Q, Lin Y C, Zhang X Y, et al. Isothermal tensile deformation behaviors and fracture mechanism of Ti-5Al-5Mo-5V-1Cr-1Fe alloy in β phase field[J]. Vacuum, 2018, 156: 187-197.
[6]Long S, Xia Y F, Wang P, et al. Constitutive modelling, dynamic globularization behavior and processing map for Ti-6Cr-5Mo-5V-4Al alloy during hot deformation[J]. Journal of Alloys and Compounds, 2019, 796: 65-76.
[7]Gao Y, Ma G Q, Zhang X Y, et al. Microstructure evolution and hot deformation behavior of Ti-6.5 Al-2Zr-1Mo-1V alloy with starting lamellar structure[J]. Journal of Alloys and Compounds, 2019, 809: 151852.
[8]Guo B Q, Semiatin S L, Jonas J J. Dynamic transformation during the high temperature deformation of two-phase titanium alloys[J]. Materials Science and Engineering: A, 2019, 761: 138047.
[9]Wang K, Wu M Y, Yan Z B, et al. Dynamic restoration and deformation heterogeneity during hot deformation of a duplex-structure TC21 titanium alloy[J]. Materials Science and Engineering: A, 2018, 712: 440-452.
[10]Lin Y C, Chen X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J]. Materials and Design, 2011, 32(4):1733-1759.
[11]Bobbili R, Madhu V. Constitutive modeling and fracture behavior of a biomedical Ti-13Nb-13Zr alloy[J]. Materials Science and Engineering: A, 2017, 700: 82-91.
[12]Jiang Y Q, Lin Y C, Wang G Q, et al. Microstructure evolution and a unified constitutive model for a Ti-55511 alloy deformed in β region[J]. Journal of Alloys and Compounds, 2021, 870: 159534.
[13]Quan G Z, Zhang Z H, Zhou Y T, et al. Numerical description of hot flow behaviors at Ti-6Al-2Zr-1Mo-1V alloy by GA-SVR and relative applications[J]. Materials Research, 2016, 19(6): 1253-1269.
[14]Zhao P K, Wei C, Li Y, et al. Effect of heat treatment on the microstructure, microhardness and impact toughness of TC11 and TC17 linear friction welded joint[J]. Materials Science and Engineering: A, 2020, 803: 140496
[15]Zhang Z X, Fan J K, Wu Z H, et al. Precipitation behavior and strengthening-toughening mechanism of hot rolled sheet of Ti65 titanium alloy during aging process[J]. Journal of Alloys and Compounds, 2020, 831: 154786.
[16]Sadeghpour S, Abbasi S M, Morakabati M, et al. Correlation between alpha phase morphology and tensile properties of a new beta titanium alloy[J]. Materials & Design, 2017, 121: 24-35.
[17]赵春阳. 航空用TC4 钛合金的热变形特性研究[D]. 长沙: 中南大学, 2017.
Zhao C Y. The Study of Characteristics in Hot Deformation of TC4 Titanium Alloy Applied in Aerospace Field [D]. Changsha: Central South University, 2017.
[18]Lin Y C, Zhao C Y, Chen M S, et al. A novel constitutive model for hot deformation behaviors of Ti-6Al-4V alloy based on probabilistic method[J]. Applied Physics A, 2016, 122(8): 716.
[19]Lin Y C, Jiang X Y, Shuai C, et al. Effects of initial microstructures on hot tensile deformation behaviors and fracture characteristics of Ti-6Al-4V alloy[J]. Materials Science and Engineering: A, 2018, 711: 293-302.
[20]Jiang Y Q, Lin Y C, Jiang X Y, et al. Hot tensile properties, microstructure evolution and fracture mechanisms of Ti-6Al-4V alloy with initial coarse equiaxed phases[J]. Materials Characterization, 2020, 163: 110272.
[21]黄剑. TC18钛合金热变形行为及微观组织/织构演变研究[D]. 长沙: 中南大学, 2019.
Huang J. Study on Hot Deformation Behavior and Microstructure/Texture Evolution of TC18 Titanium Alloy[D]. Changsha: Central South University, 2019.
[22]Lin Y C, Pang G D, Jiang Y Q, et al. Hot compressive deformation behavior and microstructure evolution of a Ti-55511 alloy with basket-weave microstructures[J]. Vacuum, 2019, 169: 108878.
[23]Lin Y C, Xiao Y W, Jiang Y Q, et al. Spheroidization and dynamic recrystallization mechanisms of Ti-55511 alloy with bimodal microstructures during hot compression in α+ β region[J]. Materials Science and Engineering: A, 2020, 782: 139282.
[24]Wang Q W, Lin Y C, Jiang Y Q, et al. Precipitation behavior of a β-quenched Ti-5Al-5Mo-5V-1Cr-1Fe alloy during high-temperature compression[J]. Materials Characterization, 2019, 151: 358-367.
[25]王乾威. 变形参数对TC18钛合金 α相 形成 的影响及参数优化[D]. 长沙: 中南大学, 2019.
Wang Q W. Effects of Deformation Parameters on Formation of α Phase in TC18 Titanium Alloy and Parameter Optimization [D]. Changsha: Central South University, 2019.
[26]Jiang Y Q, Lin Y C, Pang G D, et al. Constitutive model and processing maps for a Ti-55511 alloy in β region[J]. Advanced Engineering Materials, 2020, 22: 1900930.
[27]Lin Y C, Huang J, He D G, et al. Phase transformation and dynamic recrystallization behaviors in a Ti55511 titanium alloy during hot compression[J], J. Alloys Compd., 2019, 795: 471-482.
[28]Lin Y C, Huang J, Li H B, et al. Phase transformation and constitutive models of a hot compressed TC18 titanium alloy in the α+β regime[J]. Vacuum, 2018,157:83-91.
[29]Lin Y C, Wu Q, Pang G D, et al. Hot tensile deformation mechanism and dynamic softening behavior of Ti-6Al-4V alloy with thick lamellar microstructures[J]. Advanced Engineering Materials, 2020, 22(3): 1901193.
[30]Pang G D, Lin Y C, Qiu Y L, et al. Dislocation density-based model and stacked auto-encoder model for Ti-55511 alloy with basket-weave microstructures deformed in α+β region[J]. Advanced Engineering Materials, 2021, 23: 2001307.
[31]Xiao Y W, Lin Y C, Jiang Y Q, et al. A dislocation density-based model and processing maps of Ti-55511 alloy with bimodal microstructures during hot compression in α+ β region[J]. Materials Science and Engineering: A, 2020, 790: 139692.
[32]周晓虎, 刘卫, 郝芳, 等. 准β锻造工艺对TC21钛合金大型锻件组织及性能的影响[J]. 锻压技术, 2020, 45(6): 29-34.
Zhou X H, Liu W, Hao F, et al. Influence of quasi-β forging process on microstructure and properties of TC21 titanium alloy large forgings[J]. Forging & Stamping Technology, 2020, 45(6): 29-34.
[33]王立颖, 杨友, 刘春兰 , 热机械加工Ti-6Al-4V钛合金的流变行为和显微组织演变[J]. 锻压技术, 2020, 45(12):183-190.
Wang L Y, Yang Y, Liu C L, Rheological behavior and microstructure evolution on Ti-6Al-4V titanium alloy by hot machining[J]. Forging & Stamping Technology, 2020, 45(12):183-190.
[34]Chen W, Li C, Feng K, et al. Strengthening of a near β-Ti alloy through β grain refinement and stress-induced α precipitation[J]. Materials, 2020, 13(19):4255.
[35]唐依. TC4钛合金形变热处理对组织性能的影响及工艺优化[D]. 长沙: 中南大学, 2019.
Tang Y. Effect of Thermomechanical Treatment on Microstructure-Properties of TC4 Titanium Alloy and Process Optimization[D]. Changsha: Central South University, 2019.
[36]Souza P M, Mendiguren J, Chao Q, et al. A microstructural based constitutive approach for simulating hot deformation of Ti6Al4V alloy in the α+ β phase region[J]. Materials Science and Engineering: A, 2019, 748: 30-37.
[37]Zhao H J, Wang B Y, Ju D Y, et al. Hot tensile deformation behavior and globularization mechanism of bimodal microstructured Ti-6Al-2Zr-1Mo-1V alloy[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(12): 2449-2459.
[38]庞国东. 预热处理TC18钛合金热变形工艺研究[D]. 长沙: 中南大学, 2020.
Pang G D. Study on Deformation Technology of Preheat Treatment TC18 Titanium Alloy[D]. Changsha: Central South University, 2020.
[39]Jiang Y Q, Lin Y C, Zhao C Y, et al. A new method to increase the spheroidization rate of lamellar α microstructure during hot deformation of a Ti-6Al-4V alloy[J]. Advanced Engineering Materials, 2020, 22(10): 2000447.
[40]Chen W, Yang S, Lin Y C, et al. Multi-scale characterization of deformation features and precipitation behavior in a near β-Ti alloy[J]. Materials Characterization, 2020, 169: 110637.
[41]Chen W, Lyu Y P, Wang H D, et al. On the {1011} twin-accommodated mechanisms in equiaxed near β-Ti alloys operating by unidirectional and cross rolling[J]. Materials Science and Engineering: A, 2020, 769: 138516.
[42]Chen W, Wang H D, Lin Y C, et al. The dynamic responses of lamellar and equiaxed near β-Ti alloys subjected to multi-pass cross rolling[J]. Journal of Materials Science & Technology, 2020, 43: 220-229.
[43]Chen W, Lyu Y P, Zhang X Y, et al. Comparing the evolution and deformation mechanisms of lamellar and equiaxed microstructures in near β-Ti alloys during hot deformation[J]. Materials Science and Engineering: A, 2019, 758: 71-78.
[44]Liang H Q, Nan Y, Ning Y Q, et al. Correlation between strain-rate sensitivity and dynamic softening behavior during hot processing[J]. Journal of Alloys and Compounds, 2015, 632: 478-485.
[45]Lin Y C, Tang Y, Zhang X Y, et al. Effects of solution temperature and cooling rate on microstructure and micro-hardness of a hot compressed Ti-6Al-4V alloy[J]. Vacuum, 2019, 159: 191-199.
[46]Lin Y C, Tang Y, Jiang Y Q, et al. Precipitation of secondary phase and phase transformation behavior of a solution-treated Ti-6Al-4V alloy during high-temperature aging[J]. Advanced Engineering Materials, 2020, 22(5): 1901436.
[47]姜星友. 热处理工艺对TC4钛合金微观组织及热拉伸行为的影响[D]. 长沙: 中南大学, 2018.
Jiang X Y. Effects of Heat Treatment Processing on Microstructure and Hot Tensile Behavior of TC4 Titanium Alloy [D]. Changsha: Central South University, 2018.
[48]王立华. 固溶时效热处理对TC18钛合金组织性能的影响规律及机理[D]. 长沙: 中南大学, 2020.
Wang L H. Effects and Mechanism of Solution and Aging Heat Treatment on Microstructure and Properties of TC18 Titanium Alloy[D]. Changsha: Central South University, 2020.
[49]Lin Y C, Wang L H, Wu Q, et al. Effects of solution temperature and cooling rate on α phases and mechanical properties of a forged Ti-55511 alloy[J]. Materials Research Express, 2019, 6(11).
[50]Pang G D, Lin Y C, Jiang Y Q, et al. Precipitation behaviors and orientation evolution mechanisms of α phases in Ti-55511 titanium alloy during heat treatment and subsequent hot deformation[J]. Materials Characterization, 2020, 167: 110471.
[51]肖逸伟. TC18钛合金α+β相区热变形行为及微观组织调控方法[D]. 长沙: 中南大学, 2021.
Xiao Y W. Study on the Hot Deformation Behaviors and Microstructure Optimization of TC18 Titanium Alloy at α+β Field[D]. Changsha: Central South University, 2021.
|