[1]王飞龙, 杨玉婧, 吕敬旺, 等. 块体非晶合金超塑性成形的研究进展 [J]. 特种铸造及有色合金, 2020, 40(3): 253-258.
Wang F L, Yang Y J, Lyu J W, et al. Research progress in superplasticity of amorphous alloys [J]. Specialcast and Nonferrous Alloys, 2020, 40(3): 253-258.
[2]Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Progress in Materials Science, 2012, 57(3): 487-656.
[3]Zheng Y F, Gu X N, Witte F. Biodegradable metals [J]. Materials Science and Engineering, 2014, 77: 1-34.
[4]丁华平, 龚攀, 姚可夫, 等. 非晶合金零件成形技术研究进展 [J]. 材料导报, 2020, 34(3): 133-141.
Ding H P, Gong P, Yao K F, et al. The forming of amorphous alloy parts: A technological review [J]. Materials Reports, 2020, 34(3): 133-141.
[5]Qiao J, Jia H, Liaw P K. Metallic glass matrix composites [J]. Materials Science and Engineering, 2016, 100: 1-69.
[6]董杰, 王雨田, 胡晶, 等. 非晶合金剪切带动力学行为研究 [J]. 力学学报, 2020, 52(2): 379-391.
Dong J, Wang Y T, Hu J, et al. Shearband dynamics in metallic glasses [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 379-391.
[7]Ding H P, Zhao Z K, Jin J S, et al. Densification mechanism of Zrbased bulk metallic glass prepared by twostep spark plasma sintering [J]. Journal of Alloys and Compounds, 2021, 850: 156724.
[8]Zhang L, Narayan R L, Sun B A, et al. Cooperative shear in bulk metallic glass composites containing metastable betaTi dendrites [J]. Physical Review Letters, 2020, 125(5):055501.
[9]Jiang Y P, Shi X P, Qiu K. Numerical study of shear banding evolution in bulk metallic glass composites [J]. Material Design, 2015, 77: 32-40.
[10]Pekarskaya E, Kim C P, Johnson W L. In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite [J]. Journal of Materials Research, 2001, 16(9): 2513-2518.
[11]马将, 杨灿, 龚峰, 等. 金属玻璃的热塑性成型 [J]. 物理学报, 2017, 66(17): 251-264.
Ma J, Yang C, Gong F, et al. Thermoplastic forming of bulk metallic glasses[J]. Acta Physica Sinica, 2017, 66(17): 251-264.
[12]令狐嵘凯. 内生钛基非晶复合材料高温力学性能及微观变形机制 [D]. 太原:太原理工大学, 2019.
Linghu R K. Mechanical Property and Microscopic Deformation Mechanism of Insitu Tibased Metallic Glass Matrix Composites Deformed at High Temperature [D]. Taiyuan: Taiyuan University of Technology, 2019.
[13]Li J B, Zhang H Z, Jang J S C, et al. Viscous flow and thermoplastic forming ability of a Zrbased bulk metallic glass composite with Ta dispersoids [J]. Journal of Alloys and Compounds, 2012, 536: S165-S170.
[14]Zhang X Y, Yuan Z Z, Li D X. Microstructural evolution and homogeneous viscous flow behavior of a CuZr based bulk metallic glass composites [J]. Journal of Alloys and Compounds, 2014, 617: 670-676.
[15]Fu X L, Tan M J, Chen Y, et al. High temperature deformation behavior of Mg67Zn28Ca5 metallic glass and its composites [J]. Materials Science and Engineering, 2015, 621: 1-7.
[16]Singh P S, Narayan R L, Sen I, et al. Effect of strain rate and temperature on the plastic deformation behaviour of a bulk metallic glass composite [J]. Materials Science and Engineering, 2012, 534: 476-484.
[17]Cui J, Li J S, Wang J, et al. Deformation behavior of a Tibased bulk metallic glass composite in the supercooled liquid region [J]. Material Design, 2016, 90: 595-600.
[18]Wang Y S, Linghu R K, Liu Y Y, et al. Superplasticity and constitutive relationship in a Tibased metallic glassy composite [J]. Journal of Alloys and Compounds, 2018, 751: 391-398.
[19]Hong S H, Kim J T, Mun S C, et al. Influence of spherical particles and interfacial stress distribution on viscous flow behavior of TiCuNiZrSn bulk metallic glass composites [J]. Intermetallics, 2017,91: 90-94.
[20]Fu X L, Li Y, Schuh C A. Homogeneous flow of bulk metallic glass composites with a high volume fraction of reinforcement [J]. Journal of Materials Research, 2007, 22(6):1564-1573.
[21]Jun H, Lee K S, Chang Y W. Characterization of multiple crystallization steps in Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass [J]. Materials Science and Engineering, 2007, 449-451: 526-530.
[22]Qiao J W, Zhang Y, Jia H L, et al. Tensile softening of metallicglassmatrix composites in the supercooled liquid region [J]. Applied Physics Letters, 2012, 100(12): 121902.
[23]吴龙军. TiZr基内生非晶复合材料的过冷液相区变形行为研究 [D]. 合肥:中国科学技术大学, 2019.
Wu L J. Deformation Behavior of TiZrbased Metallic Glass Composites in the Supercooled Liquid Region [D]. Hefei: University of Science and Technology of China, 2019.
[24]Bai J, Li J S, Wang J, et al. Quasistatic and dynamic deformation of an insitu Tibased metallic glass composite in supercooled liquid region [J]. Journal of Alloys and Compounds, 2016, 679: 239-246.
[25]Nieh T G, Wadsworth J, Liu C T, et al. Plasticity and structural instability in a bulk metallic glass deformed in the supercooled liquid region [J]. Acta Materialia, 2001, 49(15): 2887-2896.
[26]Huang Y J, Shen J, Sun Y, et al. High temperature deformation behaviors of Ti40Zr25Ni3Cu12Be20 bulk metallic glass [J]. Journal of Alloys and Compounds, 2010, 504: S82-S85.
[27]Kawamura Y, Nakamura T, Kato H, et al. Newtonian and nonNewtonian viscosity of supercooled liquid in metallic glasses [J]. Materials Science and Engineering, 2001, 304-306: 674-678.
[28]Chen Q, Liu L, Chan K C. Deformation behavior of Zrbased bulk metallic glass and composite in the supercooled liquid region [J]. Science in China Series G: Physics, Mechanics and Astronomy, 2008, 51(4): 349-355.
[29]Fu H M, Liu N, Wang A M, et al. Hightemperature deformation behaviors of W/Zr based amorphous interpenetrating composite [J]. Material Design, 2014, 58: 182-186.
[30]Xu W, Robin L, Zheng R, et al. Phase redistribution in an in situ Mgbased bulk metallic glass composite during deformation in the supercooled liquid region [J]. Scripta Materialia, 2010, 63(5): 556-559.
[31]Ma D Q, Yuan S Q, Ma X Z, et al. Microstructural evolution and tensile properties of an insitu TiZrbased bulk metallic glass matrix composite after hotpressing deformation in its supercooled liquid region [J]. Journal of Alloys and Compounds, 2018, 768: 415-424.
[32]Wu L J, Zhu Z W, Liu D M, et al. Deformation behavior of a TiZrbased metallic glass composite containing dendrites in the supercooled liquid region [J]. Journal of Materials Science & Technology, 2020, 37(2): 64-70.
[33]Marandi K, Thamburaja P, Shim V P W. Constitutive description of bulk metallic glass composites at high homologous temperatures [J]. Mechanics of Materials, 2014, 75: 151-164.
[34]Gun B, Laws K J, Ferry M. Superplastic flow of a Mgbased bulk metallic glass in the supercooled liquid region [J]. Journal of NonCrystalline Solids, 2006, 352(36-37): 3896-3902.
[35]白洁. TiZrNbCuBe系非晶复合材料变形行为研究 [D]. 西安:西北工业大学, 2017.
Bai J. Deformation Behavior of TiZrNbCuBe Bulk Metallic Glass Composites [D]. Xi′an: Northwestern Polytechnical University, 2017.
[36]Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses [J]. Acta Metallurgica, 1977, 25(4): 407-415.
[37]Johnson W L, Lu J, Demetriou M D. Deformation and flow in bulk metallic glasses and deeply undercooled glass forming liquidA self consistent dynamic free volume model [J]. Intermetallics, 2002, 10(11-12): 1039-1046.
[38]Kawamura Y, Nakamura T, Kato H, et al. Newtonian and nonNewtonian viscosity of supercooled liquid in metallic glasses [J]. Materials Science and Engineering, 2001, 304: 674-678.
[39]Bletry M, Guyot P, Brechet Y, et al. Homogeneous deformation of ZrTiAlCuNi bulk metallic glasses [J]. Intermetallics, 2004, 12(10-11): 1051-1055.
[40]张香云. CuZr基非晶复合材料的制备与超塑性流变行为研究 [D]. 兰州: 兰州理工大学, 2015.
Zhang X Y. The Research on Preparation and Superplastic Flow Behavior of CuZr Based Bulk Metallic Glass Composites [D]. Lanzhou: Lanzhou University of Technology, 2015.
[41]Marandi K, Shim V P W. A finitedeformation constitutive model for bulk metallic glass composites [J]. Continuum Mech Therm, 2014, 26(3): 321-341.
[42]刘勇, 张丽, 杨湘杰, 等. 大块非晶合金热塑性成形的研究进展 [J]. 江西科学, 2011, 29(5): 611-615.
Liu Y, Zhang L, Yang X J, et al. Research on thermoplastic forming process of bulk metallic glass [J]. Jiangxi Science, 2011, 29(5): 611-615.
[43]Atay H Y, Aisman D, Jirkova H, et al. Complex shape metallic glass composites produced in one step by minithixoforming [J]. International Journal of Material Forming, 2017, 10(2): 173-180.
|