[1]涂光祺. 精冲技术[M]. 北京:机械工业出版社,2005.
Tu G Q. Fineblanking Technology[M]. Beijing: China Machine Press,2005.
[2]周林, 刘艳雄, 金红,等. 金属板料精冲挤压复合成形工艺相关国家标准研制的必要性及技术概要[J]. 锻压技术, 2019, 44(11): 186-190.
Zhou L, Liu Y X,Jin H,et al. The necessity and technical outline of developing related national standard for sheet metal fine blanking extrusion composite forming process[J]. Forging & Stamping Technology, 2019, 44(11): 186-190.
[3]Liu Y X,Shu Y W, Chen H, et al.Deformation characteristics analysis of the fineblanking-extrusion flanging process[J].Procedia Manufacturing,2020,50:129-133
[4]Schmidt R A, Birzer F, Hofel P, et al. Cold Forming and Fineblanking, a Handbook on Cold Processing, Steel Material Properties, Part Design[M]. Munchen: Carl Hanser Verlag, 2007.
[5]吕琳, 公冶凡娇, 邓雨辰,等. 凸台板件挤压成形中的几个问题[J]. 热加工工艺, 2019, 48(11): 95-99.
Lyu L, Gongye F J, Deng Y C,et al. Some problems in extrusion forming of convex plate[J]. Hot Working Technology, 2019, 48(11): 95-99.
[6]庄新村, 赵震, 向华. 中厚板挤压成形力能分析及预测[J]. 塑性工程学报, 2009, 16(6): 33-38.
Zhuang X C, Zhao Z, Xiang H. Analysis and prediction of extrusion forming force for medium plate[J]. Journal of Plasticity Engineering, 2009, 16(6): 33-38.
[7]黄兴. 中厚板挤压成形力计算模型研究[D]. 上海:上海交通大学, 2009.
Huang X. Research on Calculation Model of Forming Force in Medium-thick Sheet Metal Extrusion Process[D]. Shanghai:Shanghai Jiao Tong University, 2009.
[8]冯怡爽,何霁,韩国丰,等.金属板材塑性本构关系的深度学习预测方法及建模[J].塑性工程学报,2021,28(6):34-46.
Feng Y S, He J, Han G F, et al. Deep learning prediction method and modeling for plastic constitutive relation of sheet metal[J]. Journal of Plasticity Engineering,2021,28(6):34-46.
[9]柏阳,吴玉程,罗志勇, 等.基于Arrhenius方程和BP神经网络的2024Al/Al_(18)B_4O_(33)w复合材料热变形流变应力预测[J].锻压技术,2019,44(8):168-175,181.
Bo Y, Wu Y C, Luo Z Y, et al. Flow stress prediction of 2024Al/Al_(18)B_4O_(33) w composites under thermal deformation based on Arrhenius equation and BP neural network[J]. Forging & Stamping Technology, 2019,44(8):168-175,181.
[10]郭鹏,张新艳,余建波.基于深度强化学习与有限元仿真集成的拉深成形控制[J].机械工程学报,2020,56(20):47-58.
Guo P, Zhang X Y, Yu J B. Deep drawing forming control based on integration of deep reinforcement learning and finite element simulation [J]. Journal of Mechanical Engineering, 2020,56(20):47-58.
[11]Zhuang X C, Zhao Z, Li H Y, et al. Experimental methodology for obtaining the flow curve of sheet materials in a wide range of strains[J]. Steel Research International, 2013, 84(2): 146-154.
[12]曹益旗. 基于深度学习的板料挤压成形力预测研究[D].上海:上海交通大学, 2020.
Cao Y Q. Research on Prediction of Sheet Metal Extrusion Forming Force Based on Deep Learning[D]. Shanghai:Shanghai Jiao Tong University,2020.
[13]洪永放, 庄新村, 丁振文, 等. 不同挤压次数下板料挤压凸模磨损规律研究[J]. 塑性工程学报, 2018, 25(5): 130-135.
Hong Y F, Zhuang X C, Ding Z W, et al. Study on wear law of plate punch under different extrusion times [J]. Journal of Plasticity Engineering, 2018, 25(5): 130-135.
|