网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
难变形金属电-热-力耦合作用下的电致塑性效应研究现状
英文标题:Current status of research on electroplasticity effect for difficult-to-deform metals under electro-thermo-mechanical coupling
作者:夏琴香 陈灿 肖刚锋 谢章雄 
单位:华南理工大学 机械与汽车工程学院 
关键词:难变形金属 电致塑性效应 实验表征方法 宏观塑性变形行为 微观组织演变 
分类号:TG115.5;TH142
出版年,卷(期):页码:2021,46(9):124-131
摘要:

 通过分析难变形金属材料的变形特点,提出利用电致塑性效应来实现其精确塑性成形;从电--力耦合作用下的电致塑性效应实验表征方法、宏观塑性变形行为、微观组织演变机理等方面总结了难变形金属电致塑性效应的研究现状。分析了采用电流辅助拉伸/恒温拉伸实验、有/无强制性冷却电流辅助拉伸实验来解耦电致塑性效应的实验表征方法及其不足;探讨了电--力耦合作用下电流参数、电流施加方式等变形条件对难变形金属宏观塑性变形行为的影响规律;综述了在电流诱导下加快位错滑移、促进动态再结晶及形成局部焦耳热效应的微观组织演变的物理机制。在此基础上,提出了电-热多能场作用下实现难变形金属精确塑性成形所需解决的问题及发展方向。

 By analyzing deformation characteristics of difficult-to-deform metal materials, the electroplasticity effect was proposed to realize the precise plastic forming of difficult-to-deform metals, and the current status of research on electroplasticity effect for difficult-to-deform metals was reviewed from the aspects of experimental characterization methods of electroplasticity effect, macroscopic plastic deformation behavior and microstructure evolution mechanism under the electro-thermo-mechanical coupling. Then, the experimental characterization methods for decoupling the electroplasticity effect by the current-assisted tensile/thermal tensile experiment and current-assisted tensile experiment with/without the forced cooling and their shortcomings were analyzed, and the influence laws of deformation conditions, such as current parameters and current application modes, on the macroscopic plastic deformation behavior of difficult-to-deform metals were discussed. Furthermore, the physical mechanism of the microstructure evolution that accelerated dislocation slip, promoted dynamic recrystallization and produced local Joule heat effect under the current induction was reviewed, and on this basis, the problems and development directions that need to be solved to achieve precise plastic forming of difficult-to-deform metals under the action of electro-thermo-mechanical multi-energy fields were proposed.

 

基金项目:
国家自然科学基金资助项目(51775194); 广州市科技计划项目(201804010135)
作者简介:
夏琴香(1964-),女,博士,教授 E-mail:meqxxia@scut.edu.cn 通信作者:陈灿(1994-),男,博士研究生 E-mail:mecan.chen@mail.scut.edu.cn
参考文献:

 [1]肖刚锋, 夏琴香, 张义龙, . 镍基高温合金旋压成形技术研究现状[J]. 航空制造技术, 2020, 63(21): 46-53.


 


Xiao G F, Xia Q X, Zhang Y L, et al. Research status of spinning forming for Nibased superalloy[J]. Aeronautical Manufacturing Technology, 2020, 63(21): 46-53.


 


[2]刘世锋, 宋玺, 薛彤, . 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报, 2020, 40(3): 77-94.


 


Liu S F, Song X, Xue T, et al. Application and development of titanium alloy and titanium matrix composites in aerospace field[J]. Journal of Aeronautical materials, 2020, 40(3): 77-94.


 


[3]王海, 魏芬绒, 邓家彬, . 影响钛合金屈强比的因素及作用机理探讨[J]. 热加工工艺, 2016, 45(22): 109-115.


 


Wang H, Wei F R Deng J Bet al. Effect factors for yield ratio of titanium alloy and discussion of function mechanism [J]. Hot Working Technology, 2016, 45(22): 109-115.


 


[4]Zheng K L, Politis D J, Wang L L, et al. A review on forming techniques for manufacturing lightweight complexdshaped aluminium panel components[J]. International Journal of Lightweight Materials and Manufacture, 2018, 1(2): 55-80.


 


[5]Chang J K, Lin C S, Cheng W J, et al. Oxidation resistant silane coating for hotdip galvanized hot stamping steel[J]. Corrosion Science, 2020, 164: 108307.


 


[6]Lahiri A, Shanthraj P, Roters F. Understanding the mechanisms of electroplasticity from a crystal plasticity perspective[J]. Modelling and Simulation in Materials Science & Engineering, 2019, 27(8): 085006.


 


[7]Zhu R, Tang G. The improved plasticity of NiTi alloy via electropulsing in rolling[J]. Materials Science & Technology, 2017, 33(5): 546-551.


 


[8]Bao W, Chu X, Lin S, et al. Electroplastic effect on tensile deformation behaviour and microstructural mechanism of AZ31B alloy[J]. Materials Science and Technology, 2017, 33(7):836-845.


 


[9]徐学利, 郑梗梗, 王洪铎, . ()塑性效应在材料加工中的应用研究进展[J]. 塑性工程学报, 2017, 24(6): 1-7.


 


Xu X L, Zheng G G, Wang H D, et al. Research progress on the application of electroplastic effect in materials processing[J]. Journal of Plasticity Engineering, 2017, 24(6): 1-7.


 


[10]江双双, 汤泽军, 杜浩, . 钛合金电流辅助成形工艺研究进展[J]. 精密成形工程, 2017, 9(2): 7-13.


 


Jiang S S, Tang Z J, Du H, et al. Research progress of the forming process of titanium alloy assisted by current[J]. Journal of Netshape Forming Engineering, 2017, 9(2): 7-13.


 


[11]HuuDuc, NguyenTran, HyunSeok, et al. A review of electricallyassisted manufacturing[J]. International Journal of Precision Engineering & Manufacturing Green Technology, 2015, 2(4): 365-376.


 


[12]徐晓, 王磊, 李泽宇, . 30CrMnSiA 杯形件电流辅助拉深旋压成形工艺优化[J]. 锻压技术, 2020, 45(1): 96-102.


 


Xu X, Wang L, Li Z Y, et al. Optimization on electrically assisted deep drawing spinning process for 30CrMnSiA cupshaped part[J]. Forging & Stamping Technology, 2020, 45(1): 96-102.


 


[13]丁俊豪, 李恒, 边天军, . 电塑性及电流辅助成形研究动态及展望[J]. 航空学报, 2018, 39(1): 15-32.


 


Ding J H, Li H, Bian T J, et al. Electroplasticity and electricallyassisted forming: A critical review[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 15-32.


 


[14]Xiang S Q, Zhang X F. Dislocation structure evolution under electroplastic effect[J]. Materials Science & Engineering A, 2019, 761: 138026.


 


[15]Kim M J, Jeong H J, Park J W, et al. Modified JohnsonCook model incorporated with electroplasticity for uniaxial tension under a pulsed electric current[J]. Metals and Materials International, 2018, 24(1):42-50.


 


[16]赵文凯, 池成忠, 崔晓磊, . 电流加载方式对AZ31B镁合金板材拉伸变形行为的影响[J]. 塑性工程学报, 2020, 27(4): 101-109.


 


Zhao W K, Chi C Z, Cui X L, et al. Effect of electric current loading mode on tensile deformation behavior of AZ31B magnesium alloy sheet[J]. Journal of Plasticity Engineering,2020, 27(4): 101-109.


 


[17]Jiang T H, Peng L F, Yi P Y, et al. Investigation of deformation behavior of SS304 and pure copper subjected to electrically assisted forming process[J]. Journal of Manufacturing Science & Engineering, 2017, 139(1): 011004-1.


 


[18]Zhao Y C, Wan M, Meng B, et al. Pulsed current assisted forming of ultrathin superalloy sheet: Experimentation and modelling[J]. Materials Science & Engineering A, 2019, 767: 138412.


 


[19]Roh J H, Seo J J, Hong S T, et al. The mechanical behavior of 5052H32 aluminum alloys under a pulsed electric current[J]. International Journal of Plasticity, 2014, 58: 84-99.


 


[20]Xie H Y, Wang Q, Peng F, et al. Electroplastic effect in AZ31B magnesium alloy sheet through uniaxial tensile tests[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(8): 2686-2692.


 


[21]Lee J W, Kim S J, Lee M G, et al. Experimental and numerical study on the deformation mechanism in AZ31B Mg alloy sheets under pulsed electricassisted tensile and compressive tests[J]. Metallurgical & Materials Transactions A, 2016, 47(6): 2783-2794.


 


[22]Magargee J, Fan R, Cao J. Analysis and observations of current density sensitivity and thermally activated mechanical behavior in electricallyassisted deformation[J]. Journal of Manufacturing Science & Engineering, 2013, 135(6): 061022-1.


 


[23]Hariharan K, Lee M G, Kim M J, et al. Decoupling thermal and electrical effect in an electrically assisted uniaxial tensile test using finite element analysis[J]. Metallurgical & Materials Transactions A, 2015, 46(7): 3043-3051.


 


[24]杜引, 赵亦希, 于忠奇, . 2060T铝锂合金电致塑性本构方程[J]. 塑性工程学报, 2017, 24(1):133-139.


 


Du Y, Zhao Y X, Yu Z Q, et al. Constitutive equation of electroplastic effect for 2060T8 AlLi alloy[J]. Journal of Plasticity Engineering, 2017, 24(1): 133-139.


 


[25]石文, 董湘怀. AZ31B镁合金电流辅助拉伸的多场耦合分析[J]. 塑性工程学报, 2019, 26(6): 106-113.


 


Shi W, Dong X H. Multiphysical field coupled analysis of electric current assisted tension of AZ31B magnesium alloy[J]. Journal of Plasticity Engineering, 2019, 26(6): 106-113.


 


[26]Ruszkiewicz B, Grimm T, Ragai I, et al. A review of electricallyassisted manufacturing with emphasis on modeling and understanding of the electroplastic effect[J]. Journal of Manufacturing Science & Engineering, 2017, 139: 110801-1.


 


[27]Zhang X, Li H W, Zhan M. Mechanism for the macro and micro behaviors of the Nibased superalloy during electricallyassisted tension: Local Joule heating effect[J]. Journal of Alloys and Compounds, 2018, 742:480-489.


 


[28]Zhao S T, Zhang R P, Chong Y, et al. Defect reconfiguration in a TiAl alloy via electroplasticity[J]. Nature Materials, 2021, 20: 468-472.


 


[29]Zhao Z Y, Wang G F, Hou H L, et al. Influence of highenergy pulse current on the mechanical properties and microstructures of Ti6Al4V alloy[J]. Journal of Materials Engineering & Performance, 2017, 26: 5146-5153.


 


[30]Zhao Z Y, Hou H L, Zhang N, et al. Effect of highenergy electropulses on the compression deformation behavior of Ti6Al4V alloy[J]. Metals & Materials International, 2016, 22(4): 585-593.


 


[31]Zhao Y X, Peng L F, Lai X M. Influence of the electric pulse on springback during stretch Ubending of Ti6Al4V titanium alloy sheets[J]. Journal of Materials Processing Technology, 2018, 261: 12-23.


 


[32]Breda M, Michieletto F, Beridze E, et al. Experimental study on electroplastic effect in AISI 316L austenitic stainless steel[J]. Applied Mechanics and Materials, 2015, 792: 568-571.


 


[33]李泽宇, 徐晓, 王磊, . 脉冲电流对30CrMnSiA合金钢流动应力的影响[J]. 锻压技术, 2019, 44(2): 79-85.


 


Li Z Y, Xu X, Wang L, et al. Influence of pulse current on flow stress of 30CrMnSiA alloy steel[J]. Forging & Stamping Technology, 2019, 44(2): 79-85.


 


[34]Xu D K, Lu B, Cao T T, et al. Enhancement of process capabilities in electricallyassisted double sided incremental forming[J]. Materials & Design, 2016, 92: 268-280.


 


[35]Zhao J Q, Ren Z C, Zhang H, et al. Electroplasticity in AZ31B subjected toshortduration highfrequency pulsed current[J]. Journal of Applied Physics, 2019, 125(18): 185104.


 


[36]Lee T K, Magargee J, Ng M K, et al. Constitutive analysis of electricallyassisted tensile deformation of CPTi based on nonuniform thermal expansion, plastic softening and dynamic strain aging[J]. International Journal of Plasticity 2017, 94: 44-56.


 


[37]Hui X, Liu X B, Zhang D, et al. Minimizing serrated flow in AlMg alloys by electroplasticity[J]. Journal of Materials Science & Technology, 2019, 35:1108-1112.


 


[38]Wesley A S, Jones J J, Cristina B, et al. Electrically Assiseted Forming: Modeling and Control[M]. Switzerland: Springer, 2015.


 


[39]Conrad H. Electroplasticity in metals and ceramics[J]. Materials Science & Engineering A, 2000, 287(2):276-287.


 


[40]An J L, Wang L, Song X, et al. New approach for plastic deformation behavior of GH4169 superalloy with insitu electricpulse current at 800 ℃[J]. Materials Science & Engineering A, 2017, 707: 356-361.


 


[41]Zhao J Y, Wang G X, Dong Y L, et al. Multiscale modeling of localized resistive heating in nanocrystalline metals subjected to electropulsing[J]. Journal of Applied Physics, 2017, 122(8): 085101.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9