[1]肖刚锋, 夏琴香, 张义龙, 等. 镍基高温合金旋压成形技术研究现状[J]. 航空制造技术, 2020, 63(21): 46-53.
Xiao G F, Xia Q X, Zhang Y L, et al. Research status of spinning forming for Nibased superalloy[J]. Aeronautical Manufacturing Technology, 2020, 63(21): 46-53.
[2]刘世锋, 宋玺, 薛彤, 等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报, 2020, 40(3): 77-94.
Liu S F, Song X, Xue T, et al. Application and development of titanium alloy and titanium matrix composites in aerospace field[J]. Journal of Aeronautical materials, 2020, 40(3): 77-94.
[3]王海, 魏芬绒, 邓家彬, 等. 影响钛合金屈强比的因素及作用机理探讨[J]. 热加工工艺, 2016, 45(22): 109-115.
Wang H, Wei F R, Deng J B,et al. Effect factors for yield ratio of titanium alloy and discussion of function mechanism [J]. Hot Working Technology, 2016, 45(22): 109-115.
[4]Zheng K L, Politis D J, Wang L L, et al. A review on forming techniques for manufacturing lightweight complexdshaped aluminium panel components[J]. International Journal of Lightweight Materials and Manufacture, 2018, 1(2): 55-80.
[5]Chang J K, Lin C S, Cheng W J, et al. Oxidation resistant silane coating for hotdip galvanized hot stamping steel[J]. Corrosion Science, 2020, 164: 108307.
[6]Lahiri A, Shanthraj P, Roters F. Understanding the mechanisms of electroplasticity from a crystal plasticity perspective[J]. Modelling and Simulation in Materials Science & Engineering, 2019, 27(8): 085006.
[7]Zhu R, Tang G. The improved plasticity of NiTi alloy via electropulsing in rolling[J]. Materials Science & Technology, 2017, 33(5): 546-551.
[8]Bao W, Chu X, Lin S, et al. Electroplastic effect on tensile deformation behaviour and microstructural mechanism of AZ31B alloy[J]. Materials Science and Technology, 2017, 33(7):836-845.
[9]徐学利, 郑梗梗, 王洪铎, 等. 电(致)塑性效应在材料加工中的应用研究进展[J]. 塑性工程学报, 2017, 24(6): 1-7.
Xu X L, Zheng G G, Wang H D, et al. Research progress on the application of electroplastic effect in materials processing[J]. Journal of Plasticity Engineering, 2017, 24(6): 1-7.
[10]江双双, 汤泽军, 杜浩, 等. 钛合金电流辅助成形工艺研究进展[J]. 精密成形工程, 2017, 9(2): 7-13.
Jiang S S, Tang Z J, Du H, et al. Research progress of the forming process of titanium alloy assisted by current[J]. Journal of Netshape Forming Engineering, 2017, 9(2): 7-13.
[11]HuuDuc, NguyenTran, HyunSeok, et al. A review of electricallyassisted manufacturing[J]. International Journal of Precision Engineering & Manufacturing Green Technology, 2015, 2(4): 365-376.
[12]徐晓, 王磊, 李泽宇, 等. 30CrMnSiA 杯形件电流辅助拉深旋压成形工艺优化[J]. 锻压技术, 2020, 45(1): 96-102.
Xu X, Wang L, Li Z Y, et al. Optimization on electrically assisted deep drawing spinning process for 30CrMnSiA cupshaped part[J]. Forging & Stamping Technology, 2020, 45(1): 96-102.
[13]丁俊豪, 李恒, 边天军, 等. 电塑性及电流辅助成形研究动态及展望[J]. 航空学报, 2018, 39(1): 15-32.
Ding J H, Li H, Bian T J, et al. Electroplasticity and electricallyassisted forming: A critical review[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 15-32.
[14]Xiang S Q, Zhang X F. Dislocation structure evolution under electroplastic effect[J]. Materials Science & Engineering A, 2019, 761: 138026.
[15]Kim M J, Jeong H J, Park J W, et al. Modified JohnsonCook model incorporated with electroplasticity for uniaxial tension under a pulsed electric current[J]. Metals and Materials International, 2018, 24(1):42-50.
[16]赵文凯, 池成忠, 崔晓磊, 等. 电流加载方式对AZ31B镁合金板材拉伸变形行为的影响[J]. 塑性工程学报, 2020, 27(4): 101-109.
Zhao W K, Chi C Z, Cui X L, et al. Effect of electric current loading mode on tensile deformation behavior of AZ31B magnesium alloy sheet[J]. Journal of Plasticity Engineering,2020, 27(4): 101-109.
[17]Jiang T H, Peng L F, Yi P Y, et al. Investigation of deformation behavior of SS304 and pure copper subjected to electrically assisted forming process[J]. Journal of Manufacturing Science & Engineering, 2017, 139(1): 011004-1.
[18]Zhao Y C, Wan M, Meng B, et al. Pulsed current assisted forming of ultrathin superalloy sheet: Experimentation and modelling[J]. Materials Science & Engineering A, 2019, 767: 138412.
[19]Roh J H, Seo J J, Hong S T, et al. The mechanical behavior of 5052H32 aluminum alloys under a pulsed electric current[J]. International Journal of Plasticity, 2014, 58: 84-99.
[20]Xie H Y, Wang Q, Peng F, et al. Electroplastic effect in AZ31B magnesium alloy sheet through uniaxial tensile tests[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(8): 2686-2692.
[21]Lee J W, Kim S J, Lee M G, et al. Experimental and numerical study on the deformation mechanism in AZ31B Mg alloy sheets under pulsed electricassisted tensile and compressive tests[J]. Metallurgical & Materials Transactions A, 2016, 47(6): 2783-2794.
[22]Magargee J, Fan R, Cao J. Analysis and observations of current density sensitivity and thermally activated mechanical behavior in electricallyassisted deformation[J]. Journal of Manufacturing Science & Engineering, 2013, 135(6): 061022-1.
[23]Hariharan K, Lee M G, Kim M J, et al. Decoupling thermal and electrical effect in an electrically assisted uniaxial tensile test using finite element analysis[J]. Metallurgical & Materials Transactions A, 2015, 46(7): 3043-3051.
[24]杜引, 赵亦希, 于忠奇, 等. 2060T铝锂合金电致塑性本构方程[J]. 塑性工程学报, 2017, 24(1):133-139.
Du Y, Zhao Y X, Yu Z Q, et al. Constitutive equation of electroplastic effect for 2060T8 AlLi alloy[J]. Journal of Plasticity Engineering, 2017, 24(1): 133-139.
[25]石文, 董湘怀. AZ31B镁合金电流辅助拉伸的多场耦合分析[J]. 塑性工程学报, 2019, 26(6): 106-113.
Shi W, Dong X H. Multiphysical field coupled analysis of electric current assisted tension of AZ31B magnesium alloy[J]. Journal of Plasticity Engineering, 2019, 26(6): 106-113.
[26]Ruszkiewicz B, Grimm T, Ragai I, et al. A review of electricallyassisted manufacturing with emphasis on modeling and understanding of the electroplastic effect[J]. Journal of Manufacturing Science & Engineering, 2017, 139: 110801-1.
[27]Zhang X, Li H W, Zhan M. Mechanism for the macro and micro behaviors of the Nibased superalloy during electricallyassisted tension: Local Joule heating effect[J]. Journal of Alloys and Compounds, 2018, 742:480-489.
[28]Zhao S T, Zhang R P, Chong Y, et al. Defect reconfiguration in a TiAl alloy via electroplasticity[J]. Nature Materials, 2021, 20: 468-472.
[29]Zhao Z Y, Wang G F, Hou H L, et al. Influence of highenergy pulse current on the mechanical properties and microstructures of Ti6Al4V alloy[J]. Journal of Materials Engineering & Performance, 2017, 26: 5146-5153.
[30]Zhao Z Y, Hou H L, Zhang N, et al. Effect of highenergy electropulses on the compression deformation behavior of Ti6Al4V alloy[J]. Metals & Materials International, 2016, 22(4): 585-593.
[31]Zhao Y X, Peng L F, Lai X M. Influence of the electric pulse on springback during stretch Ubending of Ti6Al4V titanium alloy sheets[J]. Journal of Materials Processing Technology, 2018, 261: 12-23.
[32]Breda M, Michieletto F, Beridze E, et al. Experimental study on electroplastic effect in AISI 316L austenitic stainless steel[J]. Applied Mechanics and Materials, 2015, 792: 568-571.
[33]李泽宇, 徐晓, 王磊, 等. 脉冲电流对30CrMnSiA合金钢流动应力的影响[J]. 锻压技术, 2019, 44(2): 79-85.
Li Z Y, Xu X, Wang L, et al. Influence of pulse current on flow stress of 30CrMnSiA alloy steel[J]. Forging & Stamping Technology, 2019, 44(2): 79-85.
[34]Xu D K, Lu B, Cao T T, et al. Enhancement of process capabilities in electricallyassisted double sided incremental forming[J]. Materials & Design, 2016, 92: 268-280.
[35]Zhao J Q, Ren Z C, Zhang H, et al. Electroplasticity in AZ31B subjected toshortduration highfrequency pulsed current[J]. Journal of Applied Physics, 2019, 125(18): 185104.
[36]Lee T K, Magargee J, Ng M K, et al. Constitutive analysis of electricallyassisted tensile deformation of CPTi based on nonuniform thermal expansion, plastic softening and dynamic strain aging[J]. International Journal of Plasticity 2017, 94: 44-56.
[37]Hui X, Liu X B, Zhang D, et al. Minimizing serrated flow in AlMg alloys by electroplasticity[J]. Journal of Materials Science & Technology, 2019, 35:1108-1112.
[38]Wesley A S, Jones J J, Cristina B, et al. Electrically Assiseted Forming: Modeling and Control[M]. Switzerland: Springer, 2015.
[39]Conrad H. Electroplasticity in metals and ceramics[J]. Materials Science & Engineering A, 2000, 287(2):276-287.
[40]An J L, Wang L, Song X, et al. New approach for plastic deformation behavior of GH4169 superalloy with insitu electricpulse current at 800 ℃[J]. Materials Science & Engineering A, 2017, 707: 356-361.
[41]Zhao J Y, Wang G X, Dong Y L, et al. Multiscale modeling of localized resistive heating in nanocrystalline metals subjected to electropulsing[J]. Journal of Applied Physics, 2017, 122(8): 085101.
|