网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
航空发动机金属封严环成形回弹预测与控制
英文标题:Prediction and control of springback for aeroengine metallic sealing ring forming
作者:孟宝 贺炜林 万敏 
单位:北京航空航天大学 机械工程及自动化学院 
关键词:高温合金超薄板 封严环 循环塑性变形 循环塑性本构模型 回弹预测 
分类号:TG389
出版年,卷(期):页码:2021,46(9):145-153
摘要:

 基于循环加载-卸载和循环剪切试验,研究了0.2 mm厚的GH4169高温合金超薄板的循环塑性变形行为,评估了不同强化模型的预测精度。结果表明,GH4169高温合金超薄板在循环塑性变形过程中的弹性模量衰减了19%YU模型能够有效表征GH4169高温合金超薄板的循环力学响应行为。U形弯曲和封严环液压成形工艺过程的仿真表明,YU模型对于回弹的预测精度高于AF和各向同性模型。基于YU模型和型面补偿方法可使封严环的正向和反向回弹量分别降低52.2%68.1%

  Based on the cyclic loading and unloading and the cyclic shearing tests, the cyclic plastic deformation behavior of superalloy GH4169 ultra-thin sheet with the thickness of 0.2 mm was investigated, and the prediction accuracy of different hardening models was evaluated respectively. The results show that the elastic modulus of superalloy GH4169 ultra-thin sheet decreases by 19% during cyclic plastic deformation process, and the Y-U model can effectively characterize the cyclic mechanical response behavior of superalloy GH4169 ultra-thin sheet. The simulation of U-bending and hydroforming process of sealing ring indicates that the prediction accuracy of Y-U model for springback is higher than that of A-F and isotropic models, and based on the Y-U model and the profile compensation method, the forward and reverse springback amounts of sealing ring can be reduced by 52.2% and 68.1%, respectively.

基金项目:
国家自然科学基金资助项目(51975031);中国航发集团创新基金项目(ZZCX-2018-047)
作者简介:
孟宝(1985-),男,博士,教授 E-mail:mengbao@buaa.edu.cn 通信作者:万敏(1962-),男,博士,教授 E-mail:mwan@buaa.edu.cn
参考文献:

 [1]朱宇. 航空发动机复杂薄壁钣金结构件液压成形技术研究[D]. 北京:北京航空航天大学, 2013.


 


Zhu Y. Research on Hydroforming of Complicated Thinwalled Sheet Metal Structural Parts in Aviation Engine[D]. Beijing: Beihang University, 2013.


 


[2]马尧, 贾占举. 基于热-结构耦合的金属封严环确定性与可靠性分析[J]. 内燃机与配件, 2018(23): 78-83.


 


Ma Y, Jia Z J. Determination and reliability analysis of metal sealing ring based on thermalstructural coupling[J]. Internal Combustion Engine & Parts, 2018(23): 78-83.


 


[3]张志强, 贾晓飞,袁秋菊. 基于YoshidaUemori模型的TRIP800高强钢回弹分析[J]. 吉林大学学报:工学版, 2015, 45(6): 1852-1856.


 


Zhang Z Q, Jia X F, Yuan Q J. Spring analysis of trip high strength steel based on YoshidaUemori model[J]. Journal of Jilin University:Engineering and Technology Edition, 2015, 45(6): 1852-1856.


 


[4]段永川, 官英平,吴斌. 高强钢拼焊板V形模压弯曲回弹数值预测[J]. 机械工程学报, 2013, 49(22): 76-83.


 


Duan Y C, Guan Y P, Wu B. Numerical prediction on springback of high strength steel tailor welded blanks Vdie bending process[J]. Journal of Mechanical Engineering, 2013, 49(22): 76-83.


 


[5]罗云, 蒋文春,杨滨,. 材料强化模型对回弹计算模拟精度的影响[J]. 机械强度, 2015, 37(3): 551-555.


 


Luo Y, Jiang W C, Yang B, et al. Effect of material work hardening model on the simulation precision for springback[J]. Journal of Mechanical Strength, 2015, 37(3): 551-555.


 


[6]牛超, 陈新平,陈军. 不同材料强化模型对QP钢回弹预测精度的理论及应用研究[J]. 塑性工程学报, 2019, 26(1): 221-226.


 


Niu C, Chen X P, Chen J. Theory and application study on springback prediction accuracy for QP steel with different material hardening models[J]. Journal of Plasticity Engineering, 2019, 26(1): 221-226.


 


[7]张华平, 李亚,连昌伟. DP980高强钢U形弯曲实验与数值模拟[J].锻压技术, 2020, 45(4): 70-75.


 


Zhang H P, Li Y, Lian C W. Test and numerical simulation of Ushape bending part for DP980 high strength steel[J]. Forging & Stamping Technology, 2020, 45(4): 70-75.


 


[8]聂昕, 杨昕宇,张茜,. 基于不同应变路径的 QP980 超高强钢板回弹预测[J] .塑性工程学报, 2020, 27(4): 68-74.


 


Nie X, Yang X Y, Zhang X, et al. Springback prediction of QP980 ultra highstrength steel plate based on different strain paths[J]. Journal of Plasticity Engineering, 2020, 27(4): 68-74.


 


[9]薛新, 廖娟. DP钢板非线性滞弹性力学行为及对回弹预测的应用研究[J]. 塑性工程学报, 2018, 25(2): 234-239.


 


Xue X, Liao J. Nonlinear anelastic mechanical behavior of dualphase steel and its application to springback prediction[J]. Journal of Plasticity Engineering, 2018, 25(2): 234-239.


 


[10]刘晓立, 曹建国,柴雪婷,. 变弹性模量对高强钢辊弯成型回弹预测的影响[J]. 哈尔滨工业大学学报, 2018, 50(7): 137-143.


 


Liu X L, Cao J G, Chai X T, et al. Springback prediction of DP980 steel considering nonlinear elastic modulus in cold roll forming[J]. Journal of Harbin Institute of Technology, 2018, 50(7): 137-143.


 


[11]田恕, 李继光,刘延平,. 多规格椭球瓜瓣充液拉深成形回弹控制[J]. 锻压技术, 2019, 44(8): 55-61.


 


Tian S, Li J G, Liu Y P, et al. Springback control on hydroforming for various specifications ellipsoidal scalloped segment[J]. Forging & Stamping Technology, 2019, 44(8): 55-61.


 


[12]马尧, 冉晶. 航空发动机W型金属封严环滚压成形工艺研究[J]. 科技创新导报, 2019, 16(11): 20-22.


 


Ma Y, Ran J. Study on rolling forming process of aeroengine Wtype metal sealing ring[J]. Science and Technology Innovation Herald, 2019, 16(11): 20-22.


 


[13]朱宇, 万敏. 航空发动机薄壁W形封严环动模外压成形[J]. 航空学报, 2015, 36(7):2457-2467.


 


Zhu Y, Wan M. External pressure forming of thin walled Wshaped sealing rings in aircraft engines using movable dies[J]. Acta Aeronautica et Astronautica Sinica,2015, 36(7):2457-2467.


 


[14]Yoshida F, Uemori T, Fujiwara K. Elasticplastic behavior of steel sheets under inplane cyclic tensioncompression at large strain[J]. International Journal of Plasticity, 2002, 18(5-6): 633-659.


 


[15]Frederick C O, Armstrong P J. A mathematical representation of the multiaxial Bauschinger effect[J]. Materials at High Temperatures, 2007, 24(1): 1-26.


 


[16]Yoshida F, Uemori T. A model of largestrain cyclic plasticity describing the Bauschinger effect and workhardening stagnation[J]. International Journal of Plasticity, 2002, 18(5-6): 661-686.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9