网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
TC17钛合金中空构件连接成形工艺参数优化
英文标题:Optimization on parameters of bonding forming process for TC17 titanium alloy hollow component
作者:李淼泉 孙金钊 李宏 
单位:西北工业大学 材料学院 
关键词:钛合金 中空构件 连接成形 响应面模型 塑性应变 
分类号:TG453+.1
出版年,卷(期):页码:2021,46(9):237-244
摘要:

 合理的连接成形工艺参数是保证中空构件连接质量与结构完整性的关键。采用中心复合实验设计方法与有限元模拟技术,实现了TC17钛合金中空构件连接成形过程的数值模拟,基于响应面模型实现了工艺参数的优化。研究结果表明:温度升高对中空构件连接成形过程中FPI的塑性应变的增大作用和FPII的塑性应变的减小作用显著;变形量增大提高了FPI的塑性应变的增加率,延缓了FPII的塑性应变的增加率;以温度和变形量为响应变量,建立了中空构件连接成形过程中平均塑性应变ε-FPI和界面连接率显著增长结束时的响应参量fFPII的响应面模型,工艺参数优化的合理温度为1073 K、变形量为0.5100.631 mm。响应面模型的拟合优度R2达到99%以上,表明工艺参数优化结果是可靠的。

 To ensure the connection quality and structural integrity of hollow components, the key is to determine reasonable parameters of bonding forming process. Based on the central composite experimental design method and finite element simulation technology, the numerical simulation of the bonding forming process for TC17 titanium alloy hollow component was conducted, and the optimization on process parameters was carried out based on the response surface model. The results show that the plastic strain at the first characteristic point FPI increases greatly and the strain at the second characteristic point FPII decreases greatly with the increasing of temperature, and the rate of increase in the plastic strain at the first characteristic point FPI increases and the rate of increase in the plastic strain at the second characteristic point FPII decreases with the increasing of deformation degree in the bonding forming process of hollow component. By using the temperature and deformation degree as the corresponding variables, a response surface model of the average plastic strain εFPI  and response parameter  fFPII at the ending time of the quick increase for the bonding rate of interface during the bonding forming process of hollow component was established. After optimization of process parameters, the optimal temperature is about 1073 K and the deformation degree is in the range of 0.510-0.631 mm. The goddnes of fit R2 of response surface model is more than 99% showing that the optimization results of process parameters are reliable.

基金项目:
国家自然科学基金资助项目(51275416)
作者简介:
李淼泉(1964-),男,博士,教授 E-mail:honeymli@nwpu.edu.cn
参考文献:

 [1]Yoon Y H, Lee H S, Yi Y M. Finite element simulation on superplastic blow forming of diffusion bonded 4 sheets [J]. Journal of Materials Processing Technology, 2008, 201(1/3): 68-72.


 


[2]窦小丽, 童国权. 铝合金夹层结构超塑成形过程的有限元模拟[J]. 机械制造与自动化, 2008, 37(6): 16-18.


 


Dou X L, Tong G Q. Finite element simulation of superplastic forming process of aluminum alloy sandwich structure[J]. Machine Manufacturing and Automation, 2008, 37(6): 16-18.


 


[3]熊亮同, 刘太盈, 苗建芸, . 钛合金多层板超塑成形/扩散连接数值模拟及工艺研究[J]. 锻压设备与制造技术, 2014, 49(5): 104-107.


 


Xiong L T, Liu T Y, Miao J Y, et al. Numerical simulation and process research on superplastic forming/diffusion bonding of Titanium alloy multilayer sheet[J]. Forging Equipment and Manufacturing Technology, 2014, 49(5): 104-107.


 


[4]Wang L, Kolios A, Nishino T, et al. Structural optimization of vertical-axis wind turbine composite blades based on finite element analysis and genetic algorithm[J]. Composite Structures, 2016, 153: 123-138.


 


[5]Pourrajabian A, Afshar P A N, Ahmadizadeh M, et al. Aero-structural design and optimization of a small wind turbine blade[J]. Renewable Energy, 2016, 87: 837-848.


 


[6]杨俊杰, 王荣桥, 樊江, . 涡轮叶片的气动--结构多科学设计优化研究[J]. 航空动力学报, 2010, 25(3): 617-622.


 


Yang J J, Wang R Q, Fan J, et al. Aerodynamic-thermal-structural multidisciplinary design optimization of turbine blades [J]. Journal of Aerodynamics, 2010, 25(3): 617-622.


 


[7]谢建华. 叶片锻造过程数值模拟及预锻件形状优化设计研究[D]. 西安: 西北工业大学, 2019.


 


Xie J H. Study on Numerical Simulation of Blade Forging Process and Shape Optimization Design of Pre-forging Parts[D]. Xi′an: Northwestern Polytechnical University, 2019.


 


[8]庄茁, 由小川, 廖建晖, . 基于ABAQUS的有限元分析与应用[M]. 北京: 清华大学出版社, 2009.


 


Zhuang Z, You X C, Liao J H, et al. Finite Element Analysis and Application Based on ABAQUS[M]. Beijing: Tsinghua University Press,2009.


 


[9]曹金凤, 石亦平. ABAQUS有限元分析常见问题解答[M]. 北京: 机械工业出版社, 2009.


 


Cao J F, Shi Y P. ABAQUS Finite Element FAQ[M]. Beijing: China Machine Press, 2009.


 


[10]俞汉清, 陈金德. 金属塑性成形原理[M]. 北京: 机械工业出版社, 2010.


 


Yu H Q, Chen J D. Principle of Metal Plastic Forming[M]. Beijing: China Machine Press, 2010.


 


[11]孙金钊. 网篮组织TC17合金高温变形机制及连接过程数值模拟研究[D]. 西安: 西北工业大学, 2018.


 


Sun J Z. Numerical Simulation of Deformation Mechanism and Bonding Process of TC17 Alloy With Basket-weave Structure at Elevated Temperature[D]. Xi′an: Northwestern Polytechnical University, 2018.


 


[12]Thiyagarajan N, Grandhi R V. Multi-level design process for 3-D preform shape optimization in metal forming[J]. Journal of Materials Processing Technology, 2005, 170(1-2): 421-429.


 


[13]马闻宇. AA6082铝合金热冲压成形控性规律研究及工艺优化[D]. 北京: 北京科技大学, 2016.


 


Ma W Y. Study on the Controllability and Process Optimization of AA6082 Aluminum Alloy Hot Stamping Forming[D]. Beijing: University of Science and Technology Beijing, 2016.


 


[14]Li Y, Lu H, Daniel W J T, et al. Investigation and optimization of deformation energy and geometric accuracy in the incremental sheet forming process using response surface methodology[J]. The International Journal of Advanced Manufacturing Technology, 2015, 79(9): 1-15.


 


[15]Li Y, Lu H, Daniel W J T, et al. Investigation and optimization of deformation energy and geometric accuracy in the incremental sheet forming process using response surface methodology[J]. The International Journal of Advanced Manufacturing Technology, 2015, 79(9): 1-15.


 


[16]雷英杰, 张善文. MATLAB遗传算法工具箱及应用[M]. 西安: 西安电子科技大学出版社, 2014.


 


Lei Y J, Cheung S W. Matlab Genetic Algorithm Toolbox and Application [M]. Xi′an: Xi′an University of Electronic Science and Technology press, 2014.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9