网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
固液复合成形铝镁双金属件平直界面的精确控制
英文标题:Precise control on flat and straight interface for aluminum-magnesium bimetal component in solid-liquid composite forming
作者:陈刚1 贾澎1 陈强2 
单位:1. 哈尔滨工业大学(威海) 材料科学与工程学院 2. 西南技术工程研究所 
关键词:铝镁双金属构件 固液复合成形 复合锻造 界面平直度 成形压力 
分类号:TG316
出版年,卷(期):页码:2021,46(9):245-253
摘要:

 提出了固液复合成形制造平直界面铝镁双金属构件的方法,即采用室温固态镁合金和铝合金熔体作为初始坯料,通过整体模锻使铝合金熔体充型并包覆镁合金坯料。研究了成形压力为250300350400 MPa,铝合金熔体温度为660710760810 ℃时构件的成形质量和界面平直度。结果表明:增大压力和升高铝合金熔体温度可提高铝合金熔体的流动性,进而提高成形质量和界面平直度;但压力过大或温度过高时,镁合金易发生塑性变形,造成界面弯曲。当成形压力为350 MPa、铝合金熔体温度为710 ℃时,获得了平直而稳定的机械-冶金结合界面,实现了铝镁双金属构件平直界面的精确控制,并通过后续切削加工获得了具有完整平直界面的铝镁双金属构件。

 A method of solid-liquid composite forming to manufacture Al/Mg bimetal component with flat and straight interface was proposed, namely, solid Mg alloy at room temperature and Al alloy melt were used as initial blanks, and the Al alloy melt filled the cavity and covered the Mg alloy blank through integral die forging. Then, the forming quality and interface flatness of components under the forming pressures of 250, 300, 350 and 400 MPa as well as the temperatures of 660, 710, 760 and 810 ℃ of Al alloy melt were studied respectively. The results show that increasing the forming pressure and the temperature of Al alloy melt improves the fluidity of Al alloy melt, the forming quality and the interface flatness, but when the pressure or the temperature is too high, Mg alloy is prone to plastic deformation causing the interface to bend. As the forming pressure and the temperature of Al alloy melt were 350 MPa and 710 ℃ respectively, a flat and stable mechanical-metallurgical bonding interface is obtained to realize the precise control of the flat and straight interface for Al/Mg bimetal component, and the Al/Mg bimetal component with the flat and straight interface is obtained through the subsequent cutting process.

基金项目:
国家自然科学基金资助项目(51875121)
作者简介:
作者简介:陈刚(1986-),男,博士,副教授 E-mail:gangchen@hit.edu.cn 通信作者:陈强(1981-),男,博士,研究员 E-mail:2009chenqiang@163.com
参考文献:

 [1]谷霞, 张安义,秦建平. 双金属复合管塑性复合成形工艺及应用[J]. 精密成形工程, 2011, 3(3): 46-50.


 


Gu X, Zhang A Y, Qin J P. Technology and application of plastic forming for double metal combined pipe[J]. Journal of Netshape Forming Engineering, 2011, 3(3): 46-50.


 


[2]裴蒙蒙, 齐会萍,秦芳诚,等. 双金属复合环形构件制造技术研究进展[J]. 铸造技术, 2021, 42(1): 53-60.


 


Pei M M, Qi H P, Qin F C, et al. Research progress on manufacturing technology of bimetal composite ring[J]. Foundry Technology, 2021, 42(1): 53-60.


 


[3]王宏, 张十庆,邹兴政,等. 包铝镁合金的工艺特点及应用前景[J]. 功能材料, 2011, 42(S5): 788-790,793.


 


Wang H, Zhang S Q, Zou X Z, et al. Magnesium alloy coated by aluminum process characteristics and application prospects[J]. Journal of Functional Materials, 2011, 42(S5): 788-790,793.


 


[4]Hajjari E, Divandari M, Razavi S H, et al. Dissimilar joining of Al/Mg light metals by compound casting process[J]. Journal of Materials Science, 2011, 46(20): 6491-6499.


 


[5]聂书才. 铝镁合金包覆挤压关键技术研究[D]. 兰州:兰州理工大学, 2014.


 


Nie S C. Research on the Key Techniques of Cladding Extrusion[D]. Lanzhou: Lanzhou University of Technology, 2014.


 


[6]Negendank M, Mueller S, Reimers W. Coextrusion of MgAl macro composites[J]. Journal of Materials Processing Technology, 2012, 212(9): 1954-1962.


 


[7]乔及森, 向阳芷,聂书才,等. 铝镁异种金属复合挤压成形及界面微观组织[J]. 材料工程, 2017, 45(11): 78-83.


 


Qiao J S, Xiang Y Z, Nie S C. Compound extrusion forming and interface microstructure of Al/Mg dissimilar metal[J]. Journal of Materials Engineering, 2017, 45(11): 78-83.


 


[8]乔及森, 苏泳全,张羊阳,等. 铝镁双金属复合棒材反向等温挤压微观组织演化机理[J]. 塑性工程学报, 2019, 26(1): 182-187.


 


Qiao J S, Sun Y Q, Zhang Y Y, et al. Microstructures evolution of MgAl composite bar made by indirect isothermal coextrusion process[J]. Journal of Plasticity Engineering, 2019, 26(1): 182-187.


 


[9]Chen G, Chang X S, Liu G B, et al. Formation of metallurgical bonding interface in aluminumsteel bimetal parts by thixotropiccore compound forging[J]. Journal of Materials Processing Technology, 2020, 283: 116710.


 


[10]Thomas L, Martin S, Jochen N. Experimental and numerical investigations of Al/Mg compound specimens under load in an extended temperature range[J]. FME Transactions, 2009, 37(1):1-8.


 


[11]李铭锋,朱政强,张义福,等. AZ31Mg/6061Al超声波焊接及其界面性能分析[J]. 稀有金属, 2019, 43(6): 577-584.


 


Li M F, Zhu Z Q, Zhang Y F, et al. AZ31Mg/6061Al Ultrasonic welding and interface performance analysis[J]. Chinese Journal of Rare Metals, 2019, 43(6): 577-584.


 


[12]张阳羊, 乔及森. Al/Mg双金属等温挤压过程与材料流动特性研究[J]. 热加工工艺, 2018, 47(21): 154-159.


 


Zhang Y Y, Qiao J S. Study on isothermal extrusion process and material flow characteristics of Al/Mg bimetal[J]. Hot Working Technology, 2018, 47(21): 154-159.


 


[13]刘景涛. 5A06铝合金激光焊接固态相变组织模拟研究[D]. 南京:南京航空航天大学, 2017.


 


Liu J T. Microstructure Simulation of Solid State Transformation of Laser Welding on 5A06 Aluminum Alloy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017.


 


[14]王以华. 锻模设计技术及实例[M]. 北京:机械工业出版社, 2009.


 


Wang Y H. Forging Die Design Techniques and Examples[M]. Beijing: China Machine Press, 2009.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9