网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
锻件工艺凸台增材工艺设计合理性评价模型
英文标题:Evaluation model on design reasonability for additive manufacturing process of forgings with process boss
作者:王梦寒1 李松林1 胡亚飞1 王承2 
单位:1. 重庆大学 材料科学与工程学院 2. 二重(德阳)重型装备有限公司铸锻公司 
关键词:锻造增材工艺 工艺凸台 分界面模型 成形形貌 滑轨 
分类号:TG316
出版年,卷(期):页码:2021,46(10):12-18
摘要:

 为了判断增材工艺凸台在滑轨预锻件内所产生的熔池及热影响区能否通过终锻锻出基体零件,对滑轨增材件进行终锻模拟,研究了滑轨终锻件上工艺凸台与基体结合面处的材料流动,确定了增材时滑轨基体上允许产生的最大熔池及热影响区范围,建立了能够有效地判断锻造增材工艺中基体形貌、增材形貌及工艺参数设计合理性的分界面模型。利用分界面模型对增材工艺凸台1、2进行分析,结果表明:增材工艺凸台1处形貌设计合理,但增材工艺凸台2处形貌设计需要进一步优化。分界面模型中心区域相对误差较小,但边界处容易失真,通过增大分界面模型面积或增大边界处点密度能够有效地减小测量区域的相对误差。

 In order to determine whether the molten pool and heat-affected zone (HAZ) generated by the addictive manufacturing process boss in the pre-forgings of slide rail was forged out of the base part through the final forging, the final forging simulation of the additive manufacturing part for slide rail was conducted to study the material flow at the combination surface between process boss and substrate in the slide rail final forgings, determined the maximum allowable molten pool and the range of HAZ on the slide rail substrate in addictive  manufacturing process, and established an interface model that effectively judged the design rationality of substrate morphology, additive morphology and process parameters in forging addictive manufacturing process. Using the interface model to analyze the addictive manufacturing process boss 1 and 2, the results show that the morphology design of the additive manufacturing process boss 1 is reasonable, but the morphology design of the additive manufacturing process boss 2 requires further optimization. However, the relative error in the center area of the interface model is small, but it is easy to be distorted at the boundary. Thus, the relative error of the measurement area is effectively reduced by increasing the area of the interface model or increasing the point density at the boundary.

 
基金项目:
国家重点研发计划(2018YFB1106500)
作者简介:
作者简介:李松林(1997-),男,硕士研究生 E-mail:2326850439@qq.com 通信作者:王梦寒(1975-),女,博士,副教授,博士生导师 E-mail:cquwmh@163.com
参考文献:

 [1]吴博, 刘桐, 赵汉宇, 等. 1Cr18Ni9Ti等离子弧焊接接头显微组织及力学性能的研究[J]. 热加工工艺, 2016, 45(13): 59-61,65.


Wu B, Liu T, Zhao H Y, et al. Study on microstructure and mechanical properties of 1Cr18Ni9Ti plasma arc welding joint[J]. Hot Working Technology, 2016, 45(13): 59-61, 65.

[2]Mahaya Ghaffari, Alireza VIahedi Nemani, Mehran Rafieazad, et al. Effect of solidification defects and HAZ softening on the anisotropic mechanical properties of a wire arc additive-manufactured low-carbon low-alloy steel part[J]. JOM, 2019, 71(11): 4215-4224.

[3]Ogino Y, Asai S, Hirata Y. Numerical simulation of WAAM process by a GMAW weld pool model [J]. Welding in the World, 2018, 62(2): 393-401.

[4]Zhao Z, Sun B, Zhang Y, et al. Weld pool image acquisition and contour extraction based on arc spectrum and camera quantum efficiency[J]. Optik, 2020, 202: 1-9.

[5]曹熙勇. 铝合金CMT电弧增材制造温度场、应力场及流场数值模拟[D]. 南京:南京航空航天大学, 2018.

Cao X Y. Numerical Simulation of Temperature, Stress and Fluid Field During Wire and Arc Additive Manufacturing Process of Aluminum Alloy [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.

[6]雷洋洋. GMA增材制造熔池热场及流场数值分析[D]. 成都:西南交通大学, 2016.

Lei Y Y. Three-dimensional Numerical Simulation of Thermal and Fluid Behaviors in GMA-based Additive Manufacturing[D]. Chengdu: Southwest Jiaotong University, 2016.

[7]Trautmann M, Hertel M, Füssel U. Numerical simulation of weld pool dynamics using a SPH approach[J]. Welding in the World, 2018, 62(5): 1013-1020.

[8]周星. 电弧增材制造中电弧和熔池热质传递数值模拟[D]. 武汉:华中科技大学, 2018.

Zhou X. Numerical Simulation of Heat and Mass Transfer of Arc and Pool in Arc Additive Manufacturing[D]. Wuhan: Huazhong University of Science & Technology,2018.

[9]尹紫秋. GMAW增材制造堆积熔池表面三维重建及熔宽控制[D]. 成都:西南交通大学, 2018.

Ying Z Q. Three-dimensional Reconstruction of Molten Pool Appearance and Width Control in GMAW-based Additive Manufacturing[D]. Chengdu: Southwest Jiaotong University, 2018.

[10]周祥曼, 田启华,杜义贤,等.纵向稳态磁场对电弧增材成形零件表面质量和性能影响的研究[J].机械工程学报,2018,54(2):84-92.

Zhou X M, Tian Q H, Du Y X, et al. Study of the influence of longitudinal static magnetic field on surface quality and performances of arc welding based additive forming parts[J]. Journal of Mechanical Engineering, 2018,54(2):84-92.

[11]张义福, 张华,苏展展,等.Zr-Ni中间层对TC4钛合金/304SS不锈钢激光焊接头组织性能的影响[J].稀有金属,2020,44(11):1137-1145.

Zhang Y F, Zhang H, Su Z Z, et al. Microstructure and mechanical properties of laser welding joints between TC4 titanium alloy and 304SS stainless steel using Zr-Ni multi-interlayer[J]. Chinese Journal of Rare Metals, 2020,44(11):1137-1145.

[12]王亚辉, 黄亮, 刘翔, 等. 基于增材制造和锻造复合成形的TC4钛合金组织和性能研究[J/OL]. 稀有金属, [2020-04-28]. https://doi.org/10.13373/j.cnki.cjrm.XY19120012. 

Wang Y H, Huang L, Liu X, et al. Microstructure and mechanical properties of TC4 alloy formed by additive manufacturing combined with forging[J/OL]. Chinese Journal of Rare Metals, [2020-04-28]. https://doi.org/10.13373/j.cnki.cjrm. XY19120012.

[13]Liu X, Huang L, Wang Y H, et al. Effect of forged substrate geometry on temperature and stress field in additive manufacturing[J]. Journal of Manufacturing Processes, 2020, 52: 79-95.

[14]Markus Bambach, Irina Sizova, Aliakbar Emdadi. Development of a processing route for Ti-6Al-4V forgings based on preforms made by selective laser melting[J]. Journal of Manufacturing Processes, 2019, 37: 150-158.

[15]Irina Sizova, Markus Bambach. Hot workability and microstructure evolution of pre-forms for forgings produced by additive manufacturing[J]. Journal of Materials Processing Tech., 2018, 256: 154-159.

[16]Markus Bambacha, Irina Sizova, Frank Silzeb, et al. Hot workability and microstructure evolution of the nickel-based superalloy Inconel 718 produced by laser metal deposition[J]. Journal of Alloys and Compounds, 2018, 740: 278-287.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9