[1]吴博, 刘桐, 赵汉宇, 等. 1Cr18Ni9Ti等离子弧焊接接头显微组织及力学性能的研究[J]. 热加工工艺, 2016, 45(13): 59-61,65.
Wu B, Liu T, Zhao H Y, et al. Study on microstructure and mechanical properties of 1Cr18Ni9Ti plasma arc welding joint[J]. Hot Working Technology, 2016, 45(13): 59-61, 65.
[2]Mahaya Ghaffari, Alireza VIahedi Nemani, Mehran Rafieazad, et al. Effect of solidification defects and HAZ softening on the anisotropic mechanical properties of a wire arc additive-manufactured low-carbon low-alloy steel part[J]. JOM, 2019, 71(11): 4215-4224.
[3]Ogino Y, Asai S, Hirata Y. Numerical simulation of WAAM process by a GMAW weld pool model [J]. Welding in the World, 2018, 62(2): 393-401.
[4]Zhao Z, Sun B, Zhang Y, et al. Weld pool image acquisition and contour extraction based on arc spectrum and camera quantum efficiency[J]. Optik, 2020, 202: 1-9.
[5]曹熙勇. 铝合金CMT电弧增材制造温度场、应力场及流场数值模拟[D]. 南京:南京航空航天大学, 2018.
Cao X Y. Numerical Simulation of Temperature, Stress and Fluid Field During Wire and Arc Additive Manufacturing Process of Aluminum Alloy [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
[6]雷洋洋. GMA增材制造熔池热场及流场数值分析[D]. 成都:西南交通大学, 2016.
Lei Y Y. Three-dimensional Numerical Simulation of Thermal and Fluid Behaviors in GMA-based Additive Manufacturing[D]. Chengdu: Southwest Jiaotong University, 2016.
[7]Trautmann M, Hertel M, Füssel U. Numerical simulation of weld pool dynamics using a SPH approach[J]. Welding in the World, 2018, 62(5): 1013-1020.
[8]周星. 电弧增材制造中电弧和熔池热质传递数值模拟[D]. 武汉:华中科技大学, 2018.
Zhou X. Numerical Simulation of Heat and Mass Transfer of Arc and Pool in Arc Additive Manufacturing[D]. Wuhan: Huazhong University of Science & Technology,2018.
[9]尹紫秋. GMAW增材制造堆积熔池表面三维重建及熔宽控制[D]. 成都:西南交通大学, 2018.
Ying Z Q. Three-dimensional Reconstruction of Molten Pool Appearance and Width Control in GMAW-based Additive Manufacturing[D]. Chengdu: Southwest Jiaotong University, 2018.
[10]周祥曼, 田启华,杜义贤,等.纵向稳态磁场对电弧增材成形零件表面质量和性能影响的研究[J].机械工程学报,2018,54(2):84-92.
Zhou X M, Tian Q H, Du Y X, et al. Study of the influence of longitudinal static magnetic field on surface quality and performances of arc welding based additive forming parts[J]. Journal of Mechanical Engineering, 2018,54(2):84-92.
[11]张义福, 张华,苏展展,等.Zr-Ni中间层对TC4钛合金/304SS不锈钢激光焊接头组织性能的影响[J].稀有金属,2020,44(11):1137-1145.
Zhang Y F, Zhang H, Su Z Z, et al. Microstructure and mechanical properties of laser welding joints between TC4 titanium alloy and 304SS stainless steel using Zr-Ni multi-interlayer[J]. Chinese Journal of Rare Metals, 2020,44(11):1137-1145.
[12]王亚辉, 黄亮, 刘翔, 等. 基于增材制造和锻造复合成形的TC4钛合金组织和性能研究[J/OL]. 稀有金属, [2020-04-28]. https://doi.org/10.13373/j.cnki.cjrm.XY19120012.
Wang Y H, Huang L, Liu X, et al. Microstructure and mechanical properties of TC4 alloy formed by additive manufacturing combined with forging[J/OL]. Chinese Journal of Rare Metals, [2020-04-28]. https://doi.org/10.13373/j.cnki.cjrm. XY19120012.
[13]Liu X, Huang L, Wang Y H, et al. Effect of forged substrate geometry on temperature and stress field in additive manufacturing[J]. Journal of Manufacturing Processes, 2020, 52: 79-95.
[14]Markus Bambach, Irina Sizova, Aliakbar Emdadi. Development of a processing route for Ti-6Al-4V forgings based on preforms made by selective laser melting[J]. Journal of Manufacturing Processes, 2019, 37: 150-158.
[15]Irina Sizova, Markus Bambach. Hot workability and microstructure evolution of pre-forms for forgings produced by additive manufacturing[J]. Journal of Materials Processing Tech., 2018, 256: 154-159.
[16]Markus Bambacha, Irina Sizova, Frank Silzeb, et al. Hot workability and microstructure evolution of the nickel-based superalloy Inconel 718 produced by laser metal deposition[J]. Journal of Alloys and Compounds, 2018, 740: 278-287.
|