[1]Gonalves J F, Resende M G C. A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem[J]. Journal of Combinatorial Optimization, 2011, 22(2): 180-201.
[2]Ayadi O, Masmoudi M, Ben Ameur M, et al. A new PSO-based algorithm for two-dimensional non-guillotine non-oriented cutting stock problem[J]. Applied Artificial Intelligence, 2017, 31(4): 376-393.
[3]Ma N, Zhou Z. Mixed-integer programming model for two dimensional non-guillotine bin packing problem with free rotation[A]. 2017 4th International Conference on Information Science and Control Engineering (ICISCE) [C]. IEEE, 2017.
[4]Alvarez-Valdés R, Parajón A. A tabu search algorithm for large-scale guillotine (un) constrained two-dimensional cutting problems[J]. Computers & Operations Research, 2002, 29(7): 925-947.
[5]Hadjiconstantinou E, Iori M. A hybrid genetic algorithm for the two-dimensional single large object placement problem[J]. European Journal of Operational Research, 2007, 183(3): 1150-1166.
[6]Russo M, Sforza A, Sterle C. An exact dynamic programming algorithm for large-scale unconstrained two-dimensional guillotine cutting problems[J]. Computers & Operations Research, 2014, 50: 97-114.
[7]Wei L, Lim A. A bidirectional building approach for the 2D constrained guillotine knapsack packing problem[J]. European Journal of Operational Research, 2015, 242(1): 63-71.
[8]Martin M, Birgin E G, Lobato R D, et al. Models for the two-dimensional rectangular single large placement problem with guillotine cuts and constrained pattern[J]. International Transactions in Operational Research, 2020, 27(2): 767-793.
[9]刘小可, 扈少华, 邓国斌. 基于普通块的四块排样方式及其生成算法[J]. 锻压技术, 2019, 44(11): 51-56.
Liu X K, Hu S H, Deng G B. Four-ordinary-block cutting pattern and its generation algorithmg[J]. Forging & Stamping Technology, 2019, 44(11): 51-56.
[10]Birgin E G, Lobato R D, Morabito R. Generating unconstrained two-dimensional non-guillotine cutting patterns by a recursive partitioning algorithm[J]. Journal of the Operational Research Society, 2012, 63(2): 183-200.
[11]Shiangjen K, Chaijaruwanich J, Srisujjalertwaja W, et al. An iterative bidirectional heuristic placement algorithm for solving the two-dimensional knapsack packing problem[J]. Engineering Optimization, 2018, 50(2): 347-365.
[12]Wscher G, Hauβner H, Schumann H. An improved typology of cutting and packing problems[J]. European Journal of Operational Research, 2007, 183(3):1109-1130.
[13]Mellouli A, Mellouli R, Masmoudi F. An innovative genetic algorithm for a multi-objective optimization of two-dimensional cutting-stock problem[J]. Applied Artificial Intelligence, 2019, 33(6): 531-547.
[14]Laabadi S, Naimi M, El Amri H, et al. A crow search-based genetic algorithm for solving two-dimensional bin packing problem[A]. Joint German/Austrian Conference on Artificial Intelligence (Künstliche Intelligenz) [C]. Springer, Cham, 2019.
[15]Lai K K, Chan W M. An evolutionary algorithm for the rectangular cutting stock problem[J]. International Journal of Industrial Engineering: Theory Applications and Practice, 1997, 4(2): 130-139.
|