网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
汽车不锈钢盖板冲压仿真试验及分析
英文标题:Stamping simulation test and analysis on automobile stainless steel cover plate
作者:吴阿敏 
单位:江苏农林职业技术学院 
关键词:板材冲压 起皱 拉裂 损伤值 压边力 
分类号:TG386.1
出版年,卷(期):页码:2021,46(10):131-135
摘要:

 板材冲压工艺中最常见的缺陷即为起皱、拉裂问题,以某种结构较为复杂的汽车不锈钢盖板作为研究对象,基于DEFORM有限元平台及正交试验手段,对冲压成形过程进行数值分析,以零件最小厚度、最大厚度、损伤值、起皱作为评判目标,研究了压边力、摩擦因数、凸凹模间隙及冲压速度等不同因素水平对零件成形质量的影响规律,并通过极差分析优化了冲压工艺参数。研究结果表明:凸凹模间隙及压边力对零件成形质量的影响较大,摩擦因数的影响最小;采用最优工艺参数组合后,零件的最小厚度提高了53%,零件损伤值较小,达到了降低零件开裂风险的目的。最后,参考最优工艺参数组合进行试模生产,获得了符合要求的零件,侧面验证了模拟结果的可靠性。

 The most common defects in sheet stamping process are problems of wrinkling and cracking. For an automobile stainless steel cover plate with complex structure, the stamping process was numerically analyzed based on finite element platform DEFORM and orthogonal test method. Then, taking the minimum thickness, the maximum thickness, the damage value and the wrinkling of part as the evaluation objectives, the influences of different factors such as blank holder force, friction factor, clearance between punch and die and stamping speed on the forming quality of parts were studied, and the stamping process parameters were optimized by range analysis. The results show that the impacts of clearance between punch and die and blank holder force on the forming quality of parts were greater, and the impact of friction factor is the least. After adopting the optimal process parameters combination, the minimum thickness of part is increased by 53%, the damage value of part is small, and the purpose of reducing the crack risk for part is realized. Finally, according to the optimal process parameters combination, the trial production is carried out, and the parts that meet the requirements are obtained to verify the reliability of the simulation results.

 
基金项目:
作者简介:
作者简介:吴阿敏(1984-),女,硕士,讲师 E-mail:curryk12@yeah.net
参考文献:

 [1]邓彦波.汽车冲压件制造工艺分析[J].南方农机,2020,51(16):136-137.


Deng Y B. Analysis of automobile stamping parts manufacturing process[J]. China Southern Agricultural Machinery, 2020, 51(16):136-137. 

[2]张勇,范轶,薛洋.基于Dynaform和正交试验的轿车加强梁冲压工艺参数优化[J].锻压技术,2019,44(2):37-42.

Zhang Y, Fan Y, Xue Y. Optimization on stamping process parameters of car reinforced beam based on Dynaform and orthogonal test[J]. Forging & Stamping Technology, 2019,44(2):37-42.

[3]张晓静,周贤宾,李新军,等.汽车覆盖件多工步成形数值模拟技术研究[J].塑性工程学报,2001,8(1):25-30.

Zhang X J, Zhou X B, Li X J, et al. Numerical simulation technology on multi-operation sheet forming process[J]. Journal of Plasticity Engineering, 2001,8(1):25-30.

[4]李昂,卢桥,刘春雨,等.汽车翼子板冲压工艺及翻边整形模具结构设计[J].模具技术,2020,(3):39-44.

Li A, Lu Q, Liu C Y, et al. Design of stamping process and flanging-forming die of a car fender[J]. Die and Mould Technology, 2020, (3):39-44.

[5]刘玉山,赵明,郑飞,等.后背门内板密封面起皱问题的改善[J].模具制造,2020,20(1):24-28.

Liu Y S, Zhao M, Zheng F, et al. Improvement of wrinkling problem of sealing surface for the back door inner plate[J]. Die & Mould Manufacture, 2020, 20(1):24-28.

[6]吴艳云,刘铭心,张东民,等.基于响应面法座椅撑板拉延成型工艺参数优化[J].中国科技论文,2017,12(22):2526-2530.

Wu Y Y, Liu M X, Zhang D M, et al. Optimization on drawing process parameters for seat support plate based on response surface method[J].China Sciencepaper,2017,12(22):2526-2530.

[7]贺斌,邵世芬,罗丽.基于Dynaform的方盒形件拉深压边力的数值模拟[J].青岛大学学报:自然科学版,2016,29(4):52-57

He B, Shao S F, Luo L. Numerical simulation on blank-holder force of square box part in deep drawing based on Dynaform[J]. Journal of Qingdao University: Natural Science Edition, 2016, 29(4):52-57.

[8]魏圣坤.变压边力护罩深冲成形工艺[J].锻压技术,2020,45(5):94-99.

Wei S K. Deep drawing process of shield under variable blank holder force[J]. Forging & Stamping Technology, 2020, 45(5):94-99.

[9]刘强,俞国燕,梅端.基于Dynaform与RBF-NSGA-II算法的冲压成形工艺参数多目标优化[J].塑性工程学报,2020,27(3):16-25.

Liu Q, Yu G Y, Mei D. Multi-objective optimization of stamping forming process parameters based on Dynaform and RBF-NSGAII algorithm[J]. Journal of Plasticity Engineering,2020,27(3):16-25.

[10] 门超,徐晓东.支撑板冲压成形模具磨损分析及优化[J].锻压技术,2020,45(3):131-136.

Men C, Xu X D. Wear analysis and optimization of stamping die for support plate[J].Forging & Stamping Technology, 2020, 45(3):131-136.

[11] 余世浩,尚帅.基于数值模拟和正交试验的卡车前轴辊锻工艺优化[J].锻压装备与制造技术,2016,51(4):93-97.

Yu S H, Shang S. Optimization of roll forging process for truck front-axle based on numerical simulation and orthogonal experimental method[J]. China Metalforming Equipment & Manufacturing Technology, 2016, 51(4):93-97.

[12] 张东民,盛育东,周伟民,等.SCM435合金钢线材浮动反挤压成形模拟及参数优化[J].铸造技术,2017,38(11):2698-2700.

Zhang D M, Sheng Y D, Zhou W M, et al. Forming simulation and parameter optimization of floating back extrusion for SCM435 alloy steel wires[J]. Foundry Technology, 2017, 38(11):2698-2700.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9