网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于遗传算法的柔性冲压车间生产调度多目标优化
英文标题:Multi-object optimization on flexible stamping workshop production scheduling based on genetic algorithm
作者:王小梅1 任伟娜1 吴琼宇2 
单位:1.山东劳动职业技术学院 2.山东劳动职业技术学院 
关键词:柔性冲压车间 染色体对编码 改进遗传算法 有向变异算子 工序基因链 
分类号:
出版年,卷(期):页码:2021,46(10):203-209
摘要:

 为了减少柔性冲压车间的能耗和完工时间,提出了改进遗传算法的生产调度多目标优化策略。介绍了柔性冲压车间生产调度问题,以车间能耗和完工时间最小为目标建立了优化模型。针对柔性冲压车间生产调度问题的特异性,将遗传算法的染色体区分工序基因链和设备基因链,提出了染色体对编码方式;同时,在算法中引入了改进POX交叉算子和有向变异算子,有利于平衡机器生产负荷和提高染色体多样性。设计了3种不同侧重的优化方案,优化结果与优化中心的设定一致,说明了优化方法的可行性和有效性,同时为生产厂家提供了多种可选的生产方案。

 In order to reduce the energy consumption and completion time of flexible stamping workshop, a multi-objective optimization strategy of production scheduling was proposed based on improved genetic algorithm. Then, the production scheduling problem of flexible stamping workshop was introduced, and the optimization model with the goal of minimizing workshop energy consumption and completion time was built. Furthermore, for the specificity of the scheduling problem in flexible stamping workshop, the chromosome of the genetic algorithm was divided into procedure gene chain and equipment gene chain, and the chromosome pairs coding method was put forward. At the same time, an improved POX crossover operator and a directional mutation operator were introduced to the algorithm, which was conductive to balancing production load of machines and improving diversity of chromosomes. Finally, three optimization schemes with different emphasis were designed, and the optimization results were consistent with the settings of the optimization center to demonstrate the feasibility and effectiveness of the optimization method and provide several selectable production schemes for manufacturer.

基金项目:
2019年教育部产学合作协同育人项目(201902069016)
作者简介:
作者简介:王小梅(1983-),女,硕士,讲师 E-mail:wangxiaomei983@163.com
参考文献:

 [1]董海, 戴瑶,张天瑞. 云制造模式下基于变邻域动态烟花算法的柔性车间调度[J].组合机床与自动化加工技术,2019,(7):130-133.


Dong H, Dai Y, Zhang T R. Flexible job shop scheduling based on variable neighborhood dynamic fireworks algorithm in cloud manufacturing mode [J]. Modular Machine Tool & Automatic Manufacturing Technique, 2019,(7):130-133.

[2]Angel E, Bampis E, Gourves L. Approximation results for a bicriteria job scheduling problem on a single machine without preemption[J]. Information Processing Letters, 2005,94(1):19-27.

[3]龚继堃. 考虑物料搬运时间的车间作业调度优化研究[D].成都:西南交通大学,2019.

Gong J K. Optimization Study for Job Shop Scheduling Problem Considering Material Handling Time [D]. Chengdu: Southwest Jiaotong University, 2019.

[4]高丽, 周炳海,杨学良,等.基于多规则资源分配的柔性作业车间调度问题多目标集成优化方法[J].上海交通大学学报,2015,49(8):1191-1198.

Gao L, Zhou B H, Yang X L, et al. A multi-objective integrated optimization method for FJSP based on multi-rule resource allocation [J]. Journal of Shanghai Jiaotong University, 2015, 49(8):1191-1198.

[5]刘世平, 刘武发. 冲压车间调度的动态拥挤度NSGA-Ⅱ多目标优化方法[J].锻压技术,2021,46(1):76-82.

Liu S P, Liu W F. Stamping workshop scheduling multi-object optimization method based on Dynamic congestion degree NSGA-II algorithm [J]. Forging & Stamping Technology, 2021, 46(1):76-82.

[6]Roychowdhury S, Allen T T, Allen N B. A genetic algorithm with an earliest due date encoding for scheduling automotive stamping operations [J]. Computers & Industrial Engineering, 2017, 105:201-209.

[7]Caglar Gencosman B, Begen M A, Ozmutlu H C, et al. Scheduling methods for efficient stamping operations at an automotive company[J]. Production & Operations Management, 2016, 25(11):1902-1918.

[8]鞠录岩, 杨建军,张建兵,等. 改进NSGA算法求解多目标柔性车间作业调度问题[J].计算机工程与应用,2019,55(13):260-265.

Ju L Y, Yang J J, Zhang J B, et al. Improved NSGA for multi-objective flexible job-shop scheduling problem [J]. Computer Engineering and Applications, 2019, 55(13):260-265.

[9]沈振宇, 唐倩,黄涛,等. 面向均衡生产的多级流水车间调度模型求解[J].计算机集成制造系统,2019,25(11):2743-2752.

Shen Z Y, Tang Q, Huang T, et al. Solution of multistage flow shop scheduling model for leveling production [J]. Computer Integrated Manufacturing Systems, 2019, 25(11):2743-2752.

[10]陈帆. 基于能耗优化的冲压车间调度问题研究[D].合肥:合肥工业大学,2018.

Chen F. Research on Stamping Workshop Scheduling Problem Based on Energy Consumption Optimization [D]. Hefei: Hefei University of Technology, 2018.

[11]吴素珍, 刘成照,梁晓闯,等.基于自适应遗传算法的循环工况整车参数优化[J].机械强度,2020,42(4):849-855.

Wu S Z, Liu C Z, Liang X C, et al. Optimization of vehicle parameters in cyclic condition based on adaptive genetic algorithm [J]. Journal of Mechanical Strength, 2020, 42(4):849-855.

[12]林震, 帅剑平,袁煜.多目标柔性作业车间调度的多交叉策略元胞进化算法[J].科学技术与工程,2017,17(7):69-76.

Lin Z, Shuai J P, Yuan Y. Multi-crossover strategy of multi-objective cellular genetic algorithm research on flexible job-shop scheduling problem [J]. Science Technology and Engineering, 2017, 17(7):69-76.

[13]张曼利, 章文毅,马广彬,等.应用改进多种群遗传算法的多星成像目标规划方法[J].航天器工程,2020,29(4):40-45.

Zhang M L, Zhang W Y, Ma G B, et al. Multi-satellite imaging target planning method using improved multi-population genetic algorithm [J]. China Mechanical Engineering, 2020,29(4):40-45.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9