[1]张星临,陈送义,周亮,等.成分对Al-Zn-Mg-Cu超强铝合金淬火敏感性及组织性能的影响[J]. 稀有金属,2019, 43(6): 561-570.
Zhang X L, Chen S Y, Zhou L, et al. Effect of composition on quenching sensitivity and microstructures-properties of super-strength Al-Zn-Mg-Cu aluminum alloys[J]. Chinese Journal of Rare Metals, 2019, 43(6): 561-570.
[2]Luo J,Li M Q, Ma D W. The deformation behavior and processing maps in the isothermal compression of 7A09 aluminum alloy[J]. Materials Science and Engineering: A, 2012, 532(3):548-557.
[3]Wu H, Wen S P, Huang H,et al. Hot deformation behavior and constitutive equation of a new type Al-Zn-Mg-Er-Zr alloy during isothermal compression[J]. Materials Science & Engineering A,2016, 651:415-424.
[4]Zhao J, Deng Y, Tang J, et al. Influence of strain rate on hot deformation behavior and recrystallization behavior under isothermal compression of Al-Zn-Mg-Cu alloy[J]. Journal of Alloys and Compounds, 2019, 809:151788.
[5]Mao W M, Zhao X B. Metal Recrystallization and Grain Growth [M]. Beijing: Metallurgical Industry Press,1994.
[6]Humphrys F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. UK:Elsevier, 2004.
[7]Cubero-Sesin J M, Arita M, Watanabe M, et al. High strength and high electrical conductivity of UFG Al-2%Fe alloy achieved by high-pressure torsion and aging[J]. IOP Conference Series: Materials Science and Engineering,2014,63(1): 012117.
[8]李周兵,沈健,闫亮明,等. 应变速率对7055铝合金显微组织和力学性能的影响[J].稀有金属,2010,34(5):643-647.
Li Z B, Shen J, Yan L M, et al. Influence of hot process strain rate on microstructures and tensile properties of 7055 aluminum alloy[J]. Chinese Journal of Rare Metals, 2010, 34(5):643-647.
[9]GB/T 228—2016, 金属材料室温拉伸实验方法[S].
GB/T 228—2016, Metallic materials—Tensile testing at ambient temperature [S].
[10] Sun Y Q, Peng L J, Huang G J, et al. Effect of Mg on the stress relaxation resistance of Cu-Cr alloys[J]. Materials Science and Engineering A, 2021, 799: 140144.
[11] 陈军洲. AA7055 铝合金的时效析出行为与力学性能[D]. 哈尔滨:哈尔滨工业大学,2008.
Chen J Z. Aging Precipitation Behavior and Mechanical Properties of AA7055 Aluminum Alloy[D]. Harbin: Harbin Institute of Technology,2008.
[12] Gang S, Cerezo A. Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050)[J]. Acta Mater, 2004, 52: 4503-4516.
[13] Lee S H, Jung J G, Baik S I, et al. Precipitation strengthening in naturally aged Al-Zn-Mg-Cu alloy[J]. Materials Science and Engineering A, 2020, 803: 140719.
[14] Dixit M, Mishra R S, Sankaran K K. Structure-property correlations in Al7050 and Al7055 high-strength aluminum alloys[J]. Materials Science and Engineering A,2008, 478(1-2): 163-172.
[15] Cabibbo M. Microstructure strengthening mechanisms in different equal channel angular pressed aluminium alloys[J]. Materials Science and Engineering A,2013, 560: 413-432.
[16] Taylor G I. The mechanism of plastic deformation of crystals-Part II:Comparison with observations[J]. Proceedings of The Royal Society A, 1934, 145(855): 388-404.
[17] Starink M J, Wang P, Sinclair I, et al. Microstructure and strengthening of Al-Li-Cu-Mg alloys and MMCs: II. Modelling of yield strength[J]. Acta Materialia, 1999, 47(14): 3855-3868.
|