[1]Bagheripoor M, Bisadi H. Application of artificial neural networks for the prediction of roll force and roll torque in hot strip rolling process[J]. Applied Mathematical Modelling, 2013, 37(7): 4593-4607.
[2]Wang Z H, Zhang D H, Gong D Y, et al. A new data-driven roll force and roll torque model based on FEM and hybrid PSO-ELM for hot strip rolling[J]. ISIJ International, 2019, 59(9): 1604-1613.
[3]刘相华, 赵启林, 黄贞益. 人工智能在轧制领域中的应用进展[J]. 轧钢, 2017, 34(4): 1-5.
Liu X H, Zhao Q L, Huang Z Y. Prospect of artificial intelligent application in rolling[J]. Steel Rolling, 2017, 34(4): 1-5.
[4]Chun M S, Biglou J, Lenard J G, et al. Using neural networks to predict parameters in the hot working of aluminum alloys[J]. Journal of Materials Processing Technology, 1999, 86: 245-251.
[5]马威, 李维刚, 赵云涛, 等. 基于深度学习的热连轧轧制力预测[J]. 钢铁研究学报, 2019, 31(9): 805-815.
Ma W, Li W G, Zhao Y T, et al. Prediction of hot-rolled roll force based on deep learning[J]. Journal of Iron and Steel Research, 2019, 31(9): 805-815.
[6]周富强, 曹建国, 张杰, 等. 基于神经网络的冷连轧机轧制力预报模型[J]. 中南大学学报:自然科学版, 2006, 37(6): 1155-1160.
Zhou F Q, Cao J G, Zhang J, et al. Prediction model rolling force for tandem cold rolling mill based on neural networks and mathematical models[J]. Journal of Central South University:Science and Technology, 2006, 37(6): 1155-1160.
[7]王前锋. 基于改进型支持向量机算法的轧机轧制力预测[J]. 锻压技术, 2019, 44(4): 131-137.
Wang Q F. Rolling force prediction of rolling mill based on improved support vector machine algorithm[J]. Forging & Stamping Technology, 2019, 44(4): 131-137.
[8]何飞, 石露露, 黎敏, 等. 基于多模态和加权支持向量机的热轧轧制力智能预报[J]. 工程科学学报, 2015, 37(4): 517-521.
He F, Shi L L, Li M, et al. Intelligent prediction of rolling force in hot rolling based on a multi-model and weighted support vector machine[J]. Chinese Journal of Engineering, 2015, 37(4): 517-521.
[9]Guo Z Y, Sun J N, Du F S. Application of finite element method and artificial neural networks to predict the rolling force in hot rolling of Mg alloy plates[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2016, 116(1): 43-48.
[10]柏阳, 吴玉程, 罗志勇, 等. 基于Arrhenius方程和BP神经网络的2024Al/Al18B4O33w复合材料热变形流变应力预测[J]. 锻压技术, 2019, 44(8): 168-175.
Bo Y, Wu Y C, Luo Z Y, et al. Prediction on hot deformation flow stress of 2024Al /Al18B4O33w composites based on Arrhenius equation and BP neural network[J]. Forging & Stamping Technology, 2019, 44(8): 168-175.
[11]张生, 姜万录, 张佳慧. 基于支持向量机预测的冷连轧机轧制力精确设定方法研究[J]. 液压与气动, 2017,41(7): 50-55.
Zhang S, Jiang W L, Zhang J H. SVM prediction-based rolling force setting calculation method of tandem cold rolling mill[J]. Chinese Hydraulics & Pneumatics, 2017, 41(7): 50-55.
[12]魏立新, 魏新宇, 孙浩, 等. 基于改进遗传算法优化SVM的轧制力预报[A]. 第37届中国控制会议论文集[C]. 皮斯卡塔韦 新泽西州: IEEE, 2018.
Wei L X, Wei X Y, Sun H, et al. Rolling force prediction of SVM based on improved genetic algorithm[A]. Proceedings of the 37th Chinese Control Conference[C]. Piscataway NJ: IEEE, 2018.
[13]Wu D S, Yang Q, Wang D Z. Rolling force prediction based on PSO optimized support vector regression[A]. 2011 Seventh International Conference on Natural Computation[C]. Piscataway NJ: IEEE, 2011.
[14]Wang D H, Tan D, Liu L. Particle swarm optimization algorithm: An overview[J]. Soft Computing, 2017, 22(2): 387-408.
[15]Peng Z, Jiang Y, Yang X, et al. Bus arrival time prediction based on PCA-GA-SVM[J]. Neural Network World, 2018, 28(1): 87-104.
[16]Sims R B. The calculation of roll force and torque in hot rolling mills[J]. Proceedings of the Institution of Mechanical Engineers, 1954, 168(1): 191-200.
[17]Box J F. Guinness, gosset, fisher, and small samples[J]. Statistical Science, 1987, 2(1): 45-52.
[18]Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Spring, 1995.
[19]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proceedings of the 6th International Symposium on Micro Machine and Human Science[C]. IEEE Industrial Electronics Society: IEEE Service Center, 1995.
|