网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
汽车轮毂精锻成形工艺与自动化精锻生产线的研发及应用
英文标题:Development and application of automobile wheel hub precision forging process and automated precision forging production line
作者:冯仪 余俊 夏自力 曾凡宜 夏巨谌 邓磊 王勇 朱永吉 
单位:华中科技大学 武汉新威奇科技有限公司 武汉华中数控股份有限公司 
关键词:汽车轮毂 精锻成形 热力耦合有限元法 损伤理论 小飞边 
分类号:TG316
出版年,卷(期):页码:2021,46(11):11-17
摘要:

 根据新型汽车前轮毂的功能及结构特点,提出了锻件按精密级设计,以及采用无飞边和小飞边即平面薄飞边两种精锻成形工艺方案,并采用经典塑性成形理论及模锻成形工艺知识对两种工艺方案进行可行性分析;进而采用热力耦合有限元法及Deform3D软件对两种方案进行模拟验证,包括利用其中的损伤理论及相应的模块对小飞边方案中由圆柱体坯料一次精锻成形为最终锻件的过程进行模拟,研究了5个外突缘内部损伤值分布情况;基于上述研究结果,在综合分析比较的基础上,确定小飞边方案作为生产应用方案并设计了精锻生产线,包括生产流程的确定、设备选型及吨位确定和生产线的平面布置等,最后介绍了生产应用情况及效果。

 According to the function and structural characteristics of the new automobile front wheel hub, a design of precision level for forgings was put forward, namely, two kinds of precision forging process schemes with no flash and small flash which was flat and thin flash were adopted, and the feasibility of two process schemes was analyzed by classical plastic forming theory and die forging process knowledge. Then, the two schemes was verified and simulated by the thermo-mechanical coupling finite element method and software Deform-3D, including the use of the damage theory and corresponding modules to simulate the process of one-time precision forging for cylinder blank to the final forgings in scheme 2, and the distributions of internal damage values for five outer flanges were studied. Based on the above research results, on the basis of comprehensive analysis and comparison, the scheme 2 was selected as the final production application scheme, and the precision forging production line was designed, including the determination of production process, equipment selection, tonnage determination and production line layout. Finally, the production application and effect were introduced.

基金项目:
国家重点研发计划(2018YFB1309100);湖北省重点研发计划(2020BAB040)
作者简介:
作者简介:冯仪(1980-),男,博士,高级工程师,E-mail:hamani@163.com;通信作者:邓磊(1982-),男,博士,副教授,E-mail:denglei@hust.edu.cn
参考文献:

[1]李伟, 周家恒, 巩成龙, . 汽车轮毂轴承的疲劳寿命分析[J]. 机械制造, 2020, 58(8): 23-2934.


Li W, Zhou J H, Gong C L, et al. Fatigue life analysis of automobile wheel bearings[J]. Machinery, 2020, 58(8): 23-2934.


[2]剡昌锋, 刘超, 杨科锋, . 重卡轮毂轴承的发展现状和未来发展趋势[J]. 轴承, 2020, (2): 62-66.


Yan C F, Liu C, Yang K F, et al. Development status and future development trend of heavytruck hub bearings[J]. Bearings, 2020, (2): 62-66.


[3]袁兆静. 轮毂轴承开裂原因分析[J]. 热处理, 2021, 36(3): 60-63.


Yuan Z J. Analysis on cause of hub bearing cracking[J]. Heat Treatment, 2021, 36(3): 60-63.


[4]夏巨谌, 邓磊, 金俊松, . 我国精锻技术的现状及发展趋势[J]. 锻压技术, 2019, 44(6): 1-16.


Xia J C,Deng L, Jin J S, et al. Current situation and development trend of precision forging technology in China[J]. Forging & Stamping Technology, 201944(6):1-16.


[5]闫洪. 锻造工艺与模具设计[M]. 北京: 机械工业出版社, 2014.


Yan H. Forging Process and Die Design [M]. Beijing: China Machine Press, 2014.


[6]张运军, 陈天赋, 杨杰, . 房车转向节整体模锻关键技术与模具装置研发[J]. 中国机械工程, 2018, 29(17): 2125-2130.


Zhang Y J, Chen T F, Yang J, et al. Development on key technologies and facilities of integral die forging for motorhomes steering knuckles[J]. China Mechanical Engineering, 2018, 29(17): 2125-2130.


[7]郭玉玺, 张利. 350 MN多向双动挤压液压机活动横梁纠偏调平策略[J]. 锻压技术, 2020, 45(7): 153-159.


Guo Y X, Zhang L. Correction and leveling strategy on movable beam for 350 MN multidirectional doubleaction extrusion hydraulic press[J]. Forging & Stamping Technology, 2020, 45(7): 153-159.


[8]孙晓明, 魏华成, 杜晓钟, . DEFORM3D在整体辗钢车轮预锻模具型腔分析中的应用[J]. 锻压技术, 2020, 45(8): 23-31.


Sun X M, Wei H C, Du X Z, et al. Application of DEFORM3D in cavity analysis of preforging mold for integral steel wheel[J]. Forging & Stamping Technology, 2020, 45(8): 23-31.


[9]刘雨桐, 袁朝龙, 吴任东, . 基于压缩试验法的P91韧性断裂行为研究[J]. 中国机械工程, 2016, 27(16): 2254-2258.


Liu Y T, Yuan C L, Wu R D, et al. Study on P91 alloy ductile fracture behavior based on compressing experiment[J]. China Mechanical Engineering, 2016, 27(16): 2254-2258.


[10]Cockcroft M G, Latham D J. Ductility and the workability of metals[J]. Journal Institute of Metals, 1968, 96(1): 33-39.


[11]魏佳佳, 文九巴, 贺俊光, . 基于DEFORM3D平台下的铝合金轧制裂纹预测研究[J].塑性工程学报, 2017, 24(2): 93-98.


Wei J J, Wen J B, He J G, et al. Rolling crack prediction of aluminum alloy based on DEFORM3D platform[J]. Journal of Plasticity Engineering, 2017, 24(2): 93-98.


[12]陈学文, 朱美玲, 孙乐民. 42CrMo高温塑性损伤机理及损伤模型[J]. 塑性工程学报, 2015, 22(6): 11-14.


Chen X W, Zhu M L, Sun L M. Damage mechanism and fracture prediction model of 42CrMo steel at high temperature[J]. Journal of Plasticity Engineering, 2015, 22(6): 11-14.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9