网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
成形全过程奥氏体混晶预测模型及其工程应用
英文标题:Prediction model of austenitic mixed grains in the whole forming process and its application in engineering
作者:樊璐璐 刘晓飞 翟月雯 张鹏 莫安军 
单位:中机生产力促进中心 北京机电研究所有限公司 中国第二重型机械集团德阳万航模锻有限责任公司 
关键词:混晶 奥氏体 再结晶 晶粒尺寸 锤锻 模锻 
分类号:TG111.7
出版年,卷(期):页码:2021,46(11):49-61
摘要:

 针对材料热成形过程中奥氏体混晶现象的形成规律与原因,提出一种基于12个微观组织变量的奥氏体混晶预测模型。借助多个微观变量使得模型可详细地描述相区的晶粒尺寸、晶粒分布状态及量化材料奥氏体混晶缺陷程度。模型可预测材料在加工硬化、动态再结晶、亚动态再结晶、静态再结晶、静态晶粒长大5种微观机制下的晶粒演化过程,且5种微观机制的子模型之间可根据宏微观状态自动切换。以某航空300M钢大型锻件为工程应用研究对象,并通过二次开发将预测模型嵌入锻造模拟软件,实现了其锤锻与模锻两种工艺下成形全过程的奥氏体晶粒演化模拟;通过跟踪材料内部关键区域宏/微观变量变化情况,揭示了锻件混晶现象产生的原因和演化规律,为现行锻造工艺优化及后续热处理工艺实施提供了重要依据。

 For the formation law and reason of austenite mixed grains phenomenon during the thermoforming process of materials, a prediction model of austenite mixed grains based on twelve microstructure variables was proposed, which described in detail the grain sizes and grain distribution state of the phase zone, and quantified the defect degree of austenite mixed grains in the materials. Then, the model predicted the evolution processes for grains in the materials under five micro-mechanisms of work hardening, dynamic recrystallization, sub-dynamic recrystallization, static recrystallization and static grain growth, and the sub-models of the five micro-mechanisms were automatically switched according to the macro and micro states. Furthermore, taking an aerospace 300M steel large forgings as an engineering application research object, through the secondary development, the prediction model was embedded in the forging simulation software to realize the austenite grains evolution simulation of the whole forming process under the two processes of hammer forging and die forging, and the reason and evolution law of the mixed grains phenomenon for forgings were revealed by tracking the changes of the macro and micro variables in the key areas inside the materials to provide an important basis for the optimization on the current forging process and the implementation of the subsequent heat treatment process.

基金项目:
国家科技重大专项支持项目(2018ZX04044-001)
作者简介:
作者简介:樊璐璐(1989-)女,博士,在站博士后,E-mail:lulu_alisa_fan@163.com;通信作者:刘晓飞(1975-),男,学士,研究员,E-mail:liufly@sina.com
参考文献:

 [1]Gui B L, Y A M, X W U. Influence of forging on microstructure and impact properties of rolled H13 die steel[J]. Materials for Mechanical Engineering, 2011, 35(2):43-45.


[2]Mukhtarov S K. Scientific bases of formation technology and processing of nanostructured metals and alloys[J]. Letters on Materials, 2015, 5(2):215-219.


[3]陈飞, 刘建生, 马越. 关于轴类锻件拔长过程中组织均匀性控制的研究[J]. 机械工程学报, 2018, 54(10):110-116.


Chen F, Liu J S, Ma Y. Research on controlling organization uniformity of axial forgings in the process of swaging[J]. Journal of Mechanical Engineering, 2018, 54(10):110-116.


[4]Chen Y, Wang S W, Song H W, et al. Forging process design and simulation optimization of a complexshaped aluminium alloy component[J]. Materials Science Forum, 2018, 941:784-789.


[5]姜大鑫, 武文华, 胡平, . 高强度钢板热成形热、力、相变数值模拟分析[J]. 机械工程学报, 2012, 48(12):18-23.


Jiang D X, Wu W H, Hu P, et al. Thermomechanicalmartensitic transformation numerical simulation of high strength steel in hot forming[J]. Journal of Mechanical Engineering, 2012, 48(12):18-23.


[6]郭洪民, 刘旭波, 杨湘杰. 元胞自动机方法模拟微观组织演变的建模框架[J]. 材料工程, 2003,(8):23-27.


Guo H M, Liu X B, Yang X J. Model framework for microstructure evolution modeling with cellular automata[J]. Journal of Materials Engineering, 2003,(8):23-27.


[7]万鹏, 王克鲁,鲁世强,等.Ti2.7Cu合金热变形行为及本构关系研究[J].塑性工程学报,2019,261):143-149.


Wan PWang K LLu S Qet al. Study on hot deformation behavior and constitutive equation of Ti2.7Cu alloy[J]. Journal of Plasticity Engineering2019,261):143-149.


[8]师先哲, 杜诗文. LZ50钢静态再结晶机理及元胞自动机模拟[J]. 机械工程学报, 2019, 55(14):43-52.


Shi X Z, Du S W. Static recrystallization mechanism of LZ50 steel and cellular automata simulation[J].Journal of Mechanical Engineering,2019, 55(14):43-52.


[9]王雷刚. 大型汽轮机转子锻造工艺模拟与智能CAPP研究[D]. 秦皇岛: 燕山大学, 2002.


Wang L G. Study on Simulation and Intelligent CAPP of Forging Process for Steam Turbine Rotor[D].Qinghuangdao: Yanshan University, 2002.


[10]肖强, 刘序江,罗许,等. GH1016合金的动态再结晶行为[J].塑性工程学报,2019,263):185-191.


Xiao Q, Liu X J, Luo Xet al. Dynamic recrystallization behavior of GH1016 alloy[J].Journal of Plasticity Engineering2019,263):185-191.


[11]金泉林. 一个新的动态再结晶过程的分析模型[J].塑性工程学报,1994,1(1):3-13.


Jin Q L. A new analytical model for dynamic recrystallization process [J] Journal of Plasticity Engineering, 1994,1(1):3-13.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9