[1]刘强, 俞国燕,梅端.基于Dynaform与RBFNSGAII算法的冲压成形工艺参数多目标优化[J].塑性工程学报,2020, 27(3):16-25.
Liu Q, Yu G Y, Mei D. Multiobjective optimization of stamping forming process parameters based on Dynaform and RBFNSGAII algorithm [J]. Journal of Plasticity Engineering, 2020,27(3):16-25.
[2]邓振鹏, 周惦武,蒋朋松,等.基于正交试验的锆合金薄板带材冲压工艺参数优化[J].锻压技术,2019,44(9):12-17.
Deng Z P, Zhou D W, Jiang P S, et al. Optimization on stamping process parameters for zirconium alloy sheet strip based on orthogonal experiment [J]. Forging & Stamping Technology, 2019,44(9):12-17.
[3]苏友煌, 王军辉,冯怡爽,等.汽车内覆盖件无油冲压的数值模拟及工艺优化[J].塑性工程学报,2019,26(5):42-50.
Su Y H, Wang J H,Feng Y S, et al. Numerical simulation and process optimization of dry stamping for automotive interior cover parts [J]. Journal of Plasticity Engineering, 2019,26(5):42-50.
[4]陈剑, 戴南山,陈小龙,等.汽车下加强件前横梁冲压成型工艺模拟仿真及优化研究[J].机械工程师,2020,(1):72-75.
Chen J, Dai N S, Chen X L, et al. Simulation and optimization research on stamping forming process of front beam in automobile lower reinforcement [J]. Mechanical Engineer, 2020,(1):72-75.
[5]李奇涵, 景淑帆,高嵩,等.基于响应面法的22MnB5高强钢热冲压成形性优化[J].锻压技术,2020,45(6):93-101.
Li Q H, Jing S F, Gao S, et al. Optimization on hot stamping formability for 22MnB5 high strength steel based on response surface method [J]. Forging & Stamping Technology, 2020,45 (6):93-101.
[6]陆克中, 章哲庆,刘利斌.自适应变异的量子花授粉算法[J].控制工程,2020,27(4):683-691.
Lu K Z, Zhang Z Q, Liu L B. Adaptive mutation quantumbehaved flower pollination algorithm [J]. Control Engineering of China, 2020,27(4):683-691.
[7]Shambour M K Y, Abusnaina A A, Alsalibi A I. Modified global flower pollination algorithm and its application for optimization problems[J]. Interdisciplinary Sciences: Computational Life Sciences, 2019, 11(3):496-507.
[8]王志娟, 戴秀浪,刘秉翼.高强钢在量产车型轻量化中的实际应用[J].汽车工艺师,2020,(4):38-41.
Wang Z J, Dai X L, Liu B Y, et al. The practical application of high strength steel in the lightweight of mass production vehicle [J]. Auto Lightweight, 2020,(4):38-41.
[9]夏元峰. 变厚度汽车B柱冲压成形工艺研究及模具设计[D].哈尔滨:哈尔滨工业大学,2013.
Xia Y F. Research on Stamping Process and Mold Design of B Pillar with Variable Thickness [D]. Harbin: Harbin Institute of Technology, 2013.
[10]衣杰栋. DC05板料成形性能参数测定及汽车座椅支撑板冲压工艺优化研究[D].镇江:江苏大学,2019.
Yi J D. Determination of Formability Parameters of DC05 Sheet and Optimization of Stamping Process for Automobile Seat Support Plate [D]. Zhenjiang: Jiangsu University, 2019.
[11]蔡明浩, 兰少明,黄坤兰,等. 细化Kriging模型在轻轨车轴优化设计中的应用[J].机械设计与制造, 2019,(8):176-179.
Cai M H, Lan S M, Huang K L, et al. Application of refined Kriging model in optimization design of light rail axles [J]. Machinery Design & Manufacture, 2019,(8):176-179.
[12]武文斌, 唐燕武,朱家明,等. 基于犹豫模糊集和BP神经网络的集成预测模型及其应用[J].统计与决策,2020,36 (11):41-45.
Wu W B, Tang Y W, Zhu J M, et al. An Integrated forecasting model based on hesitant fuzzy sets and bp neural networks and its application [J]. Statistics & Decision, 2020,36(11):41-45.
[13]陆克中, 章哲庆,刘利斌. 自适应变异的量子花授粉算法[J].控制工程,2020,27(4):683-691.
Lu K Z, Zhang Z Q, Liu L B. Adaptive mutation quantumbehaved flower pollination algorithm [J]. Control Engineering of China, 2020,27(4):683-691.
[14]康帅, 俞建成,张进,等. 基于粒子群优化神经网络的水下链式机器人直航阻力预报[J].机械工程学报, 2019,55 (21):29-39.
Kang S, Yu J C, Zhang J, et al. Direct route drag prediction of chainstructured underwater vehicle based on neural network optimized by particle swarm optimization [J]. Journal of Mechanical Engineering, 2019,55(21):29-39.
|