[1]王晓强, 徐少可,崔凤奎,等.轴承套圈表面超声滚挤压加工硬化模型[J].塑性工程学报,2019,26(3):231-237.
Wang X Q, Xu S K, Cui F K, et al. Ultrasonic roller extrusion hardening model for bearing ring surface [J]. Journal of Plasticity Engineering,2019, 26(3):231-237.
[2]叶寒, 赖刘生, 李骏, 等. 超声滚压强化7075铝合金工件表面性能的研究[J]. 表面技术, 2018,47(2):8-13.
Ye H, Lai L S, Li J, et al. Surface properties of 7075 aluminum alloy workpieces after ultrasonic burnishing processing [J]. Surface Technology, 2018,47(2):8-13.
[3]Li G, Qu S G, Guan S, et al. Study on the tensile and fatigue properties of the heattreated HIP Ti6Al4V alloy after ultrasonic surface rolling treatment[J]. Surface and Coatings Technology,2019,379:124971.
[4]郑建新, 任元超. 7050铝合金二维超声滚压加工表面完整性综合评价[J]. 中国机械工程, 2018,29(13):1622-1626.
Zheng J X, Ren Y C. Comprehensive assessment of surface integrity in two dimensional ultrasonic rolling 7050 aluminum alloys[J].China Mechanical Engineering,2018,29(13):1622-1626.
[5]杨兴宽, 刘颖鑫, 武小鹏, 等. 机车车轮复合超声滚压表面强化工艺研究[J]. 铁道技术监督, 2018, 46 (8):40-43.
Yang X K, Liu Y X, Wu X P, et al. Study of ultrasonic surface rolling extrusion process for locomotive wheels[J]. Railway Quality Control, 2018, 46 (8):40-43.
[6]秦毅男, 廖晓辉,赵庆治.一种基于粒子群优化算法的神经网络训练方法[J].河南师范大学学报:自然科学版, 2007, 35(3):169-171.
Qin Y N, Liao X H, Zhao Q Z. A neural network training algorithm based on particle swarm optimization[J]. Journal of Henan Normal University:Natural Science Edition, 2007, 35(3):169-171.
[7]Lahiri S K,Ghanta K C.Development of a hybrid artificial neural network and genetic algorithm model for regime identification of slurry transport in pipelines[J]. Chemical Product and Process Modeling, 2009,4 (1):1-32.
[8]沈艳, 郭兵,古天祥.粒子群优化算法及其与遗传算法的比较[J].电子科技大学学报,2005,34(5):696-699.
Shen Y, Guo B, Gu T X. Particle swarm optimization algorithm and comparison with genetic algorithm[J]. Journal of University of Electronic Science and Technology of China,2005,34(5):696-699.
[9]Rumelhart D E, Mcclelland J L. Parallel Distributed Processing Explorations in the Microstructure of Cognition:Volume 1, Foundations of Research[M].Cambridge (Massachusetts):MIT Press, 1986.
[10]Ding X L, Guo Y B, Liu T, et al. New fault diagnostic strategies for refrigerant charge fault in a VRF system using hybrid machine learning method[J]. Journal of Building Engineering,2021,33:101577.
[11]Piotrowski A P, Napiorkowski J J, Piotrowska. A E. Population size in particle swarm optimization[J]. Swarm and Evolutionary Computation,2020,58:100718.
[12]洪文鹏, 陈重.基于自适应粒子群优化BP神经网络的氨法烟气脱硫效率预测[J].动力工程学报,2013,33(4):290-295.
Hong W P, Chen Z. Efficiency prediction of ammonia flue gas desulfurization based on adaptive PSOBP model[J]. Journal of Chinese Society of Power Engineering, 2013,33(4):290-295.
[13]张德丰. MATLAB R2017a 人工智能算法[M]. 北京:电子工业出版社,2018.
Zhang D F. MATLAB R2017a Artificial Intelligence Algorithm[M]. BeiJing: Publishing House of Electronics Industry, 2018.
[14]王建国, 孟娜,殷鑫.基于粒子群优化算法的凝汽器真空预测模型[J].动力工程学报,2012,32(10):815-819.
Wang J G, Meng N, Yin X. Prediction model of condenser vacuum degree based on particle swarm optimization algorithm[J]. Journal of Chinese Society of Power Engineering, 2012,32(10):815-819.
[15]杨文宇, 谢应明,闫坤,等.基于灰色关联BP神经网络的压缩式蓄冷系统中的水合物生成量预测[J].化工进展,2021,40(2):667-670.
Yang W Y, Xie Y M, Yan K, et al. Prediction of hydrate production in compressive cold storage system based on grey relational BP neural network[J]. Chemical Industry and Engineering Progress,2021,40(2):667-670.
[16]Boostani M, Karimi H, Azizi S. Heat transfer to oilwater flow in horizontal and inclined pipes: Experimental investigation and ANN modeling[J].International Journal of Thermal Sciences,2017,111:340-350.
|