网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铸态镍基高温合金GH4698热变形行为
英文标题:Hot deformation behavior of as-cast Ni-based superalloy GH4698
作者:王岩 谷宇 王珏 李吉东 
单位:太原钢铁(集团)有限公司  南京工程学院 
关键词:GH4698高温合金 热变形 组织性能 本构方程 动态再结晶 
分类号:TG335.3
出版年,卷(期):页码:2021,46(11):250-254
摘要:

 采用热模拟等研究方法,对不同变形工艺条件下的铸态镍基高温合金GH4698的热变形行为开展了研究,结果表明:在本实验温度范围内,随着变形温度的升高,合金发生完全动态再结晶所需变形量降低;当应变速率为1 s-1时,由1000 ℃下的真应变量0.2(变形量为17%)降低至1200 ℃下的真应变量0.08(变形量为7%);在高应变速率条件下表现出“加工硬化”、“加工硬化+动态回复”、“加工硬化+动态再结晶”3个阶段的典型特征;在变形温度较高及低应变速率条件下,热激活充足,慢速变形有利于原子扩散与晶界迁移;由应力-应变曲线可知,合金具有较高的变形抗力,通过本构方程计算获得的合金热变形激活能为425 kJ。

 The hot deformation behavior of as-cast Ni-base superalloy GH4698 under different deformation conditions was studied by means of thermal simulation. The results show that the deformation amount required for complete dynamic recrystallization of the alloy decreases with the increasing of deformation temperature in the experimental temperature range. When the strain rate is 1 s-1, the true strain decreases from 0.2 (Deformation amount of 17%) at 1000 ℃ to 0.08 (Deformation amount of 7%) at 1200 ℃, and under the condition of high strain rate, it shows the typical characteristics of three stages, such as “work hardening”, “work hardening+dynamic recovery” and “work hardening+dynamic recrystallization”. In addition, at high deformation temperature and low strain rate, the thermal activation is sufficient, and slow deformation is conducive to atomic diffusion and grain boundary migration. It can be seen from the stress-strain curve that the alloy has a higher deformation resistance, and the activation energy of hot deformation for the alloy calculated by the constitutive equation is 425 kJ.

基金项目:
山西省应用基础研究项目(201801D121077);山西省应用基础研究计划(201901D111460);山西省关键核心技术和共性技术研发攻关专项(20201102017)
作者简介:
作者简介:王岩(1982-),男,博士,高级工程师,E-mail:15448681@qq.com
参考文献:

 [1]中国航空材料手册编辑委员会. 中国航空材料手册[M].北京:中国标准出版社,2001.


China Aviation Materials Manual Editorial Committee. China Aviation Materials Manual [M]. Beijing: China Standards Press, 2001.


[2]秦鹤勇,焦兰英,张北江,等.GH4698合金的热处理制度[J].钢铁研究学报,200719( 2): 39-42.


Qin H Y, Jiao L Y, Zhang B J, et al. Heat treatment of superalloy GH4698 [J]. Journal of Iron and Steel Research, 2007, 19 (2): 39-42.


[3]Wang J, Dong J X, Zhang M C, et al. Hot working characteristics of nickelbase superalloy 740H during compression[J]. Materials Science and Engineering A, 2013, 566: 61-70.


[4]王岩, 徐芳泓,李阳,等.应变速率对617B镍基高温合金组织演变的影响[J].稀有金属材料与工程,2014,43(12):3027-3030.


Wang Y, Xu F H, Li Y, et al. Effect of strain rate on the microstructural evolution of 617B Nibase superalloy [J]. Rare Metal Materials and Engineering, 2014,43 (12): 3027-3030.


[5]王珏,董建新,张麦仓,等. 700 ℃超超临界锅炉材料GH4700合金热压缩行为 [J]. 北京科技大学学报, 20133511):1492-1499.


Wang J, Dong J X, Zhang M C, et al. Deformation behaviors during hot compression of GH4700 alloy for 700 ℃ ultrasupercritical boilers [J]. Journal of University of Science and Technology Beijing, 2013, 35 (11): 1492-1499.


[6]赵美兰,孙文儒,杨树林,等.GH761变形高温合金的热变形行为[J].金属学报,200945(1)79-83.


Zhao M L, Sun W R, Yang S L, et al. Hot deformation behavior of gh761 wrought Ni base superalloy [J]. Acta Metallurgica Sinica, 2009, 45 (1): 79-83.


[7]刘鹏飞,刘东,罗子健,等.GH761合金的热变形行为与动态再结晶模型[J].稀有金属材料与工程,200938(2)275-279.


Liu P F, Liu D, Luo Z J, et al. Flow behavior and dynamic recrystallization model for GH761 super alloy during hot deformatin[J]. Rare Metal Materials and Engineering, 2009, 38 (2): 275-279.


[8]Zhang P, Hu C, Zhu Q, et al. Hot compression deformation and constitutive modeling of GH4698 alloy[J]. Materials & Design, 2015, 65: 1153-1160.


[9]Chen X, Lin Y C, Chen M, et al. Microstructural evolution of a nickelbased superalloy during hot deformation[J]. Materials & Design, 2015, 77: 41-49.


[10]张施琦,冯定,张跃,等.新型超高强度热冲压用钢的热变形行为及本构关系[J].材料工程,201644(5)15-21.


Zhang S Q, Feng D, Zhang Y, et al. Hot deformation behavior and constitutive model of advanced ultrahigh strength hot stamping steel[J]. Journal of Materials Engineering, 2016, 44 (5): 15-21.


[11]Wang Y, Xu F H, Li Y, et al. Deformation characteristic of 617B nickel basesuperalloy for 700 ℃ ultrasupercritical boilers[A].HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels[C]. Springer, Cham, 2015.


[12]Jiang H, Dong J X, Zhang M C, et al. The recrystallization model and microstructure prediction of alloy 690 during hot deformation[J]. Materials & Design, 2016, (104): 162-173.


[13]Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling[J]. Metal Science and Heat Treatment, 1979, 13(3): 187-194.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9