[1]Lin Y C, Chen M S, Zhang J. Modeling of flow stress of 42CrMo steel under hot compression[J]. Materials Science and Engineering A, 2009, 499(1): 88-92.
[2]Quan G Z, Liu K W, Zhou J, et al. Dynamic softening behaviors of 7075 aluminum alloy[J].Transactions of Nonferrous Metals Society of China, 2009, 19(s3): s537-s541.
[3]Lin Y C, Chen M S, Zhong J. Numerical simulation for stress/strain distribution and microstructural evolution in 42CrMo steel during hot upsetting process[J]. Computational Materials Science, 2008, 43(4): 1117-1122.
[4]Lin Y C, Zhang J, Zhong J, et al. Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel[J]. Computational Materials Science, 2008, 43(4): 752-758.
[5]李景丹, 刘建生,任树兰.铸态316LN钢基于应变补偿的本构模型[J].锻压技术,2019, 44(4): 176-181.
Li J D, Liu J S, Ren S L. Constitutive model of cast 316LN steel based on strain compensation[J]. Forgine & Stamping Technology, 2019, 44(4): 176-181.
[6]付甲, 李永堂,付建华,等.铸态42CrMo钢热压缩变形时动态再结晶行为[J].机械工程材料,2012, 36(2): 91-95.
Fu J, Li Y T, Fu J H, et al. Dynamic recrystallization behavior of ascast 42CrMo steel during hot compression deformation[J]. Material for Mechanical Engineering, 2012, 36(2), 91-95.
[7]刘江林, 曾卫东,谢英杰,等.基于应变补偿TC4DT钛合金高温变形本构模型[J].稀有金属材料与工程,2015, 44(11): 2742-2746.
Liu J L, Zeng W D, Xie Y J, et al. Constitutive model of TC4DT Titanium alloy at elevated temperature considering compensation of strain[J]. Rare Metal Materials and Engineering, 2015, 44(11): 2742-2746.
[8]冯建铭, Eliane G,曹旭东,等.考虑应变补偿的Al2024合金本构方程研究[J].塑性工程学报,2017,24(6): 151-156.
Feng J M, Eliane G, Cao X D, et al. Study on constitutive equations of 2024 aluminum alloy considering the compensation of strain[J]. Journal of Plasticity Engineering, 2017, 24(6): 151-156.
[9]陈学文, 王纳纳,皇涛,等.超超临界转子用X12钢高温变形行为及基于应变补偿的本构模型[J].材料热处理学报,2018, 39(5): 134-139.
Chen X W, Wang N N, Huang T, et al. Hot deformation behavior of X12 steel for ultrasupercritical rotor and its constitutive model based on strain compensation[J]. Translations of Materials and Heat Treatment, 2018, 39(5): 134-139.
[10]朱洪军. 高强韧Ti64246合金热变形行为及应变补偿型本构模型[J].金属热处理,2016,41(8): 184-188.
Zhu H J. Hot deformation behavior and strain compensation constitutive model of high strength and high toughness Ti6246 alloy[J]. Heat Treatment of Metals, 2016, 41(8): 184-188.
[11]Zhang C, Li X Q, Li D S, et al. Modelization and comparison of NortonHoff and Arrhenius constitutive laws to predict hot tensile behavior of Ti6Al4V alloy[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(2): s457-464.
[12]李红英, 赵菲,刘丹,等.工程机械用Q1100钢的热变形应变补偿本构方程[J].中南大学学报:自然科学版,2020, 51(3): 608-618.
Li H Y, Zhao F, Liu D, et al. Thermal deformation strain compensation constitutive equation for Q1100 steel for construction machinery[J]. Journal of Central South University:Science and Technology, 2020, 51(3): 608-618.
[13]Mandal S, Rakesh V, Sivaprasad P V, et al. Constitutive equations to predict high temperature flow stress in a Timodifified austenitic stainless steel[J]. Materials Science & Engineering A, 2009, 500(1-2): 114-121.
[14]Cai J, Li F G, Liu T Y, et al. Constitutive equations for elevated temperature flow stress of Ti6Al4V alloy considering the effect of strain[J]. Materials & Design, 2011, 32(3): 1144-1151.
[15]Lin Y C, Xia Y C, Chen X M, et al. Constitutive descriptions for hot compressed 2124T851 aluminum alloy over a wide range of temperature and strain rate[J]. Computational Materials Science, 2010, 50(1): 227-233.
[16]Haghdadi N, Zareihanzaki A, Abedi H R, et al. The flow behavior modeling of cast A356 aluminum alloy at elevated temperatures considering the effect of strain[J]. Materials Science & Engineering A, 2012,535: 252-257.
[17]Changizian P, Zareihanzaki A, Roostaei A A. The high temperature flow behavior modeling of AZ81 magnesium alloy considering strain effects[J]. Materials & Design, 2012, 39: 384-389.
[18]Mohamadizadeh A, Zareihanzaki A, Abedi H R, et al. Modified constitutive analysis and activation energy evolution of a lowdensity steel considering the effects of deformation parameters[J]. Mechanics of Materials, 2016: 60-70.
[19]Liu L, Wu Y X, Gong H, et al. Modification of constitutive model and evolution of activation energy on 2219 aluminum alloy during warm deformation process[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(3): 448-459.
[20]吴道祥,梁强,王敏.2024A铝合金高温流变行为及本构关系研究[J].特种铸造及有色合金,2020,40(3),233-238.
Wu D X, Liang Q, Wang M. Hot deformation behavior and constitutive equation of 2024A aluminum a11oy[J]. Special Casting & Nonlerrous Alloys, 2020, 40(3): 233-238.
|