网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
锻态42CrMo钢高温变形过程中本构模型修正及激活能演化
英文标题:Modification of constitutive model and evolution of activation energy for forged 42CrMo steel during high temperature deformation process
作者:陈园园 齐会萍 李永堂 庞晓龙 
单位:太原科技大学 晋中学院 
关键词:锻态42CrMo钢 高温压缩变形 本构模型 激活能 流动应力 
分类号:TG333
出版年,卷(期):页码:2021,46(11):260-269
摘要:

 采用Gleeble3500D热模拟试验机,对锻态42CrMo钢进行高温压缩试验,试验变形温度为1123、1223和1323 K,试验应变速率为0.01、0.1、1和5 s-1,采集到流动应力-应变曲线。试验结果显示,该材料的流动应力同时受到应变、应变速率及变形温度的影响。借助Arrhenius本构模型,考虑应变、应变速率和变形温度对锻态42CrMo钢不同材料参数的影响,将应变、应变速率和变形温度的影响纳入本构方程,建立考虑应变、应变速率和变形温度的锻态42CrMo钢本构模型,并对传统本构方程进行修正。通过对比试验和预测流动应力,对该模型的适用性进行了评价,得到R和ARRE值分别为0.9926和3.54%,并将该修正的本构模型的精度与前人本构模型精度进行对比,发现修正的本构模型的精度明显更高,说明考虑应变、应变速率和变形温度的本构模型能够更准确、更全面地预测该材料的流动应力。而且不同变形条件下的激活能随着变形温度的升高先降低后升高,随着应变速率的升高先升高后降低,同时激活能受到应变和应变速率耦合效应的影响。

 The high temperature compression experiments of forged 42CrMo steel were conducted by thermal simulator Gleeble-3500D at the deformation temperatures of 1123, 1223 and 1323 K and the strain rates of 0.01, 0.1, 1 and 5 s-1, and the flow stress-strain curves were obtained. The experimental results show that the flow stress of material is simultaneously affected by strain, strain rate and deformation temperature. With the help of Arrhenius constitutive model, the influences of the strain, strain rate and deformation temperature on different material parameters of forged 42CrMo steel were considered, the effects of the strain, strain rate and deformation temperature were incorporated into the constitutive equation to establish a constitutive model of forged 42CrMo steel considering strain, strain rate and deformation temperature, and the traditional constitutive model was modified. Then, the applicability of the model was evaluated by comparative experiments and prediction of flow stress, and the values of R and ARRE are 0.9926 and 3.54%, respectively. Comparing the accuracy of the modified constitutive model with that of previous constitutive models, it is found that the accuracy of the modified constitutive model is higher obviously. It shows that the constitutive model considering strain, strain rate and deformation temperature can predict the flow stress of the material more accurately and comprehensively. Furthermore,the activation energy under different deformation conditions shows firstly decreases and then increases with the increasing of deformation temperature and firstly increases and then decreases with the increasing of strain rate. At the same time, the activation energy is affected by the coupled effect of strain and strain rate.

基金项目:
国家自然科学基金资助项目(51875383,51575371);山西省高校科技创新项目(2020L0579)
作者简介:
作者简介:陈园园(1983-),女,博士研究生,讲师,E-mail:123042922@qq.com;通信作者:齐会萍(1974-),女,博士,教授,E-mail:qhp9974@tyust.edu.cn
参考文献:

 [1]Lin Y C, Chen M S, Zhang J. Modeling of flow stress of 42CrMo steel under hot compression[J]. Materials Science and Engineering A, 2009, 499(1): 88-92.


[2]Quan G Z, Liu K W, Zhou J, et al. Dynamic softening behaviors of 7075 aluminum alloy[J].Transactions of Nonferrous Metals Society of China, 2009, 19(s3): s537-s541.


[3]Lin Y C, Chen M S, Zhong J. Numerical simulation for stress/strain distribution and microstructural evolution in 42CrMo steel during hot upsetting process[J]. Computational Materials Science, 2008, 43(4): 1117-1122.


[4]Lin Y C, Zhang J, Zhong J, et al. Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel[J]. Computational Materials Science, 2008, 43(4): 752-758.


[5]李景丹, 刘建生,任树兰.铸态316LN钢基于应变补偿的本构模型[J].锻压技术,2019, 44(4): 176-181.


Li J D, Liu J S, Ren S L. Constitutive model of cast 316LN steel based on strain compensation[J]. Forgine & Stamping Technology, 2019, 44(4): 176-181.


[6]付甲, 李永堂,付建华,.铸态42CrMo钢热压缩变形时动态再结晶行为[J].机械工程材料,2012, 36(2): 91-95.


Fu J, Li Y T, Fu J H, et al. Dynamic recrystallization behavior of ascast 42CrMo steel during hot compression deformation[J]. Material for Mechanical Engineering, 2012, 36(2), 91-95.


[7]刘江林, 曾卫东,谢英杰,.基于应变补偿TC4DT钛合金高温变形本构模型[J].稀有金属材料与工程,2015, 44(11): 2742-2746.


Liu J L, Zeng W D, Xie Y J, et al. Constitutive model of TC4DT Titanium alloy at elevated temperature considering compensation of strain[J]. Rare Metal Materials and Engineering, 2015, 44(11): 2742-2746.


[8]冯建铭, Eliane G,曹旭东,.考虑应变补偿的Al2024合金本构方程研究[J].塑性工程学报,2017,24(6): 151-156.


Feng J M, Eliane G, Cao X D, et al. Study on constitutive equations of 2024 aluminum alloy considering the compensation of strain[J]. Journal of Plasticity Engineering, 2017, 24(6): 151-156.


[9]陈学文, 王纳纳,皇涛,.超超临界转子用X12钢高温变形行为及基于应变补偿的本构模型[J].材料热处理学报,2018, 39(5): 134-139.


Chen X W, Wang N N, Huang T, et al. Hot deformation behavior of X12 steel for ultrasupercritical rotor and its constitutive model based on strain compensation[J]. Translations of Materials and Heat Treatment, 2018, 39(5): 134-139.


[10]朱洪军. 高强韧Ti64246合金热变形行为及应变补偿型本构模型[J].金属热处理,2016,41(8): 184-188.


Zhu H J. Hot deformation behavior and strain compensation constitutive model of high strength and high toughness Ti6246 alloy[J]. Heat Treatment of Metals, 2016, 41(8): 184-188.


[11]Zhang C, Li X Q, Li D S, et al. Modelization and comparison of NortonHoff and Arrhenius constitutive laws to predict hot tensile behavior of Ti6Al4V alloy[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(2): s457-464.


[12]李红英, 赵菲,刘丹,.工程机械用Q1100钢的热变形应变补偿本构方程[J].中南大学学报:自然科学版,2020, 51(3): 608-618.


Li H Y, Zhao F, Liu D, et al. Thermal deformation strain compensation constitutive equation for Q1100 steel for construction machinery[J]. Journal of Central South University:Science and Technology, 2020, 51(3): 608-618.


[13]Mandal S, Rakesh V, Sivaprasad P V, et al. Constitutive equations to predict high temperature flow stress in a Timodifified austenitic stainless steel[J]. Materials Science & Engineering A, 2009, 500(1-2): 114-121.


[14]Cai J, Li F G, Liu T Y, et al. Constitutive equations for elevated temperature flow stress of Ti6Al4V alloy considering the effect of strain[J]. Materials & Design, 2011, 32(3): 1144-1151.


[15]Lin Y C, Xia Y C, Chen X M, et al. Constitutive descriptions for hot compressed 2124T851 aluminum alloy over a wide range of temperature and strain rate[J]. Computational Materials Science, 2010, 50(1): 227-233.


[16]Haghdadi N, Zareihanzaki A, Abedi H R, et al. The flow behavior modeling of cast A356 aluminum alloy at elevated temperatures considering the effect of strain[J]. Materials Science & Engineering A, 2012,535: 252-257.


[17]Changizian P, Zareihanzaki A, Roostaei A A. The high temperature flow behavior modeling of AZ81 magnesium alloy considering strain effects[J]. Materials & Design, 2012, 39: 384-389.


[18]Mohamadizadeh A, Zareihanzaki A, Abedi H R, et al. Modified constitutive analysis and activation energy evolution of a lowdensity steel considering the effects of deformation parameters[J]. Mechanics of Materials, 2016: 60-70.


[19]Liu L, Wu Y X, Gong H, et al. Modification of constitutive model and evolution of activation energy on 2219 aluminum alloy during warm deformation process[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(3): 448-459.


[20]吴道祥,梁强,王敏.2024A铝合金高温流变行为及本构关系研究[J].特种铸造及有色合金,2020,40(3),233-238.


Wu D X, Liang Q, Wang M. Hot deformation behavior and constitutive equation of 2024A aluminum a11oy[J]. Special Casting & Nonlerrous Alloys, 2020, 40(3): 233-238.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9