[1]Liu J, Liu X, Le B T. Rolling force prediction of hot rolling based on GA-MELM [J]. Complexity, 2019,(4):1-11.
[2]郝心耀.基于机器学习算法的轧机轧制力预测[J].现代电子技术,2016,39(20):114-116,120.
Hao X Y. Rolling mill rolling force prediction based on machine learning algorithm[J]. Modern Electronics Technique, 2016, 39(20):114-116,120.
[3]Zhang F, Zhao Y T, Shao J, et al. Rolling force prediction in heavy plate rolling based on uniform differential neural network[J]. Journal of Control Science & Engineering, 2016:1-9.
[4]刘明华,张强,刘英华,等.基于机器学习的热轧轧制力预测[J].锻压技术,2021, 46(10):233-241.
Liu M H, Zhang Q, Liu Y H, et al. Prediction of rolling force in hot rolling based on machine learning [J]. Forging & Stamping Technology,2021, 46(10):233-241.
[5]冀秀梅,王龙,高克伟,等.极限学习机在中厚板轧制力预报中的应用[J]. 钢铁研究学报, 2020,32(5):393-399.
Ji X M, Wang L, Gao K W, et al. Application of ELM to predict plate rolling force [J]. Journal of Iron and Steel Research, 2020,32(5):393-399.
[6]Zheng G, Ge L H, Shi Y Q, et al. Dynamic rolling force prediction of reversible cold rolling mill based on BP neural network with improved PSO[A]. 2018 Chinese Automation Congress (CAC) [C]. 2018.
[7]Wang Z H, Gong D Y, Li X, et al. Prediction of bending force in the hot strip rolling process using artificial neural network and genetic algorithm (ANN-GA)[J]. International Journal of Advanced Manufacturing Technology, 2017, 93(4):1-14.
[8]Zhang Z K, Luan F, Li D, et al. Prediction of rolling force in the hot strip rolling using support vector regression with principal components analysis[A]. 2019 2nd International Conference on Information Systems and Computer Aided Education (ICISCAE) [C]. IEEE, 2020.
[9]Yang Y B, Peng Y. Dynamic rolling model based on uniform deformation[J]. Journal of Manufacturing Processes, 2020, 58:1334-1347.
[10]彭文, 姬亚锋, 陈小睿,等. 热轧非稳态过程轧制力自学习模型优化[J]. 东北大学学报:自然科学版, 2019, 40(10):1408-1412.
Peng W, Ji Y F, Chen X R, et al. Optimization of rolling force self-learning model in unsteady process of hot rolling[J]. Journal of Northeastern University: Natural Science, 2019, 40(10):1408-1412.
[11]孙一康.冷热轧板带轧机的模型与控制[M].北京:冶金工业出版社,2010.
Sun Y K. Model and Control of Cold and Hot Strip Rolling Mill[M]. Beijing: Metallurgical Industry Press, 2010.
[12]曹建国,张杰,张少军.轧钢设备及自动控制[M]. 北京:化学工业出版社,2010.
Cao J G, Zhang J, Zhang S J. Rolling Equipment and Automatic Control[M]. Beijing: Chemical Industry Press, 2010.
[13]何飞,石露露,黎敏,等.基于多模态和加权支持向量机的热轧轧制力智能预报[J].工程科学学报,2015,37(4):517-521.
He F, Shi L L, Li M, et al. Intelligent prediction of rolling force in hot rolling based on a multi-model and weighted support vector machine[J]. Journal of Engineering Science, 2015, 37(4):517-521.
[14]洪悦,唐立新,张颜颜.基于数据子空间PLS建模技术的热轧轧制力优化设定[J].控制与决策,2014,29(7):1199-1204.
Hong Y, Tang L X, Zhang Y Y. Optimization of rolling force of hot rolling by using data subspace PLS modeling technique [J].Control and Decision, 2014,29(7):1199-1204.
[15]周富强,曹建国,张杰,等.冷连轧机轧制力在线计算模型[J].北京科技大学学报,2006,28(9):859-862.
Zhou F Q, Cao J G, Zhang J, et al. On-line calculation model of rolling force for tandem cold rolling mill [J]. Journal of University of Science and Technology Beijing, 2006,28(9): 859-862.
[16]宋勇,苏岚,荆丰伟,等.热轧带钢轧制力模型自学习算法优化[J].北京科技大学学报,2010,32(6):802-806.
Song Y, Su L, Jin F W, et al. Self-learning algorithm optimization for the rolling force model of hot strips[J]. Journal of University of Science and Technology Beijing, 2010, 32(6): 802-806.
[17]魏立新,翟博豪,赵志伟,等.基于半监督深度网络的冷连轧轧制力预报[J].塑性工程学报,2020,27(11):70-76.
Wei L X, Zhai B H, Zhao Z W, et al. Prediction of cold continuous rolling force based on semi-supervised deep network[J]. Journal of Plasticity Eengineering, 2020, 27(11): 70-76.
[18]陈丹,邵健,殷实,等.基于大数据平台的冷连轧轧制力自学习模型优化[J].冶金自动化,2020,44(6):25-29,61.
Chen D, Shao J, Yin S, et al. Optimization of self-learning model of cold rolling force based on big data platform[J]. Metallurgical Industry Automation, 2020, 44(6):25-29, 61.
[19]章顺虎,姜兴睿,尤凤翔,等.融合工业大数据的热轧厚板轧制力模型研究[J].精密成形工程,2020,12(2):8-14.
Zhang S H, Jiang X R, You F X, et al. Investigation on the model of rolling force by integrating industrial big data [J]. Journal of Netshape Forming Eengineering, 2020,12(2):8-14.
[20]孙全龙,梅益,杨幸雨.压铸模型腔曲面铣削表面粗糙度GA-ELM预测[J].机械设计与制造,2020,(8):188-191,196.
Sun Q L, Mei Y, Yang X Y. GA-ELM Prediction of surface roughness of die casting die cavity surface milling[J]. Machinery Design & Manufacture, 2020,(8):188-191,196.
[21]Wang Y Q, Dou Y, Liu X W, et al. PR-ELM: Parallel regularized extreme learning machine based on cluster[J]. Neurocomputing,2016, 173:1073-1081.
[22]陈则王,李福胜,林娅,等.基于GA-ELM的锂离子电池RUL间接预测方法[J].计量学报,2020,41(6):735-742.
Chen Z W, Li F S, Lin Y, et al. Indirect prediction method of rul for lithium-ion battery based on GA-ELM[J]. Acta Metrologica Sinica, 2020,41(6):735-742.
[23]马威,李维刚,赵云涛,等.基于深度学习的热连轧轧制力预测[J].钢铁研究学报,2019,31(9):805-815.
Ma W, Li W G, Zhao Y T, et al. Prediction of hot-rolled roll force based on deep learning[J]. Journal of Iron and Steel Research,2019,31(9):805-815.
|