网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
径锻机夹钳简谐振动系统仿真研究
英文标题:Simulation research on simple harmonic vibration system of clamp for radial forging machine
作者:刘赟清1 2 3 高俊峰2 3 4 马学鹏1 2 3 潘多斐1 2 3 黄周轩1 2 3 靳鹏飞5 
单位:1. 兰州兰石重工有限公司 2. 甘肃省金属塑性成型装备智能控制重点实验室 3. 甘肃省大型快锻液压设备技术创新中心 4. 兰州兰石集团有限公司 5. 北京科技大学 新金属材料国家重点实验室 
关键词:径锻机 夹钳 简谐振动 锻造频次 伺服阀控制信号 锤头位移 
分类号:TH137
出版年,卷(期):页码:2022,47(1):146-152
摘要:

 对操作机夹钳旋转简谐振动原理进行分析,总结出径锻机锤头位移和操作机夹钳间歇性旋转动作之间的对应关系,并利用Amesim搭建了径锻机夹钳简谐振动系统的仿真模型,建立了锤头位移与简谐振动液压伺服阀信号之间的函数关系,将锤头位移转化为液压伺服阀控制信号为折线、等加减速曲线、正弦曲线3种函数关系。在其余参数相同的条件下改变锻造频次,对以上3种函数关系实现的简谐振动效果进行对比分析。结果表明:在低频次锻造时,液压伺服阀控制信号为等加减速曲线的控制效果更理想;随着锻造频次的增加,夹钳瞬间停顿时间较短,而正弦曲线控制效果更理想;同时,高频次锻造时,夹钳旋转动作明显滞后于控制信号,需精确调节锤头位移传感器与偏心轴的相对角度或传感器的相对零点。

 The simple harmonic vibration principle of the clamp rotation for manipulator was analyzed, and the corresponding relationship between the hammer displacement of radial forging machine and the intermittent rotation action of manipulator was summarized.A simulation model of the simple harmonic vibration system for radial forging machine was built by Amesim. Then, the functional relationship between the hammer displacement and the signal of simple harmonic vibration hydraulic control valve was established. Finally, the hammer displacement was converted into the control signal of hydraulic valve as three functional relationships: broken line, equal acceleration and deceleration curve and sine curve. The forging frequency was changed under the same conditions of other parameters, and the simple harmonic vibration effects achieved by the mentioned three functions were compared and analyzed. The results show that when forging at low frequency, the control effect is more satisfactory by using the equal acceleration and deceleration function curve signal to control hydraulic valve. As the forging frequency increases, the instantaneous pause time of the clamp is shorter, and the control effect is more satisfactory by using the sine curve signal to control hydraulic valve. When forging at high frequency, the rotation action of the clamp obviously lagged the control signal, and the relative angle of the displacement sensor of hammer and eccentric shaft, or the relative zero point of the displacement sensor needs to be adjusted accurately.

基金项目:
甘肃省创新基地和人才计划项目资助(18JR2JA001)
作者简介:
作者简介:刘赟清(1984-),男,学士,高级工程师 E-mail:398688285@qq.com 通信作者:潘多斐(1987-),男,学士,中级工程师 E-mail:790183094@qq.com
参考文献:

 [1]   刘赟清,安建军,黄周轩,等. 基于AMESim对径锻机操作机低速稳定性分析[J]. 液压气动与密封,2016,36(10):43-45.


Liu Y Q,An J J,Huang Z X,et al. Analysis of low speed stability of diameter forging machine based on AMESim [J]. Hydraulic Pneumatics & Seals, 2016, 36(10):43-45.

[2]   杨益航,赖飞龙, 郑艾龙,等. 钼棒材径向锻的失效机制研究[J]. 塑性工程学报, 2020, 27(4):27-32.

Yang Y H,Lai F L,Zheng A L,et al. Research on failure mechanisms of radial forging of Mo bars [J]. Journal of Plasticity Engineering,2020,27(4):27-32.

[3]   Domblesky J P,Shivpuri R,Altan T. A review of radial forging technology including Preform design for process optimization [R]. Columbus: Ohio State University, 1994.

[4]   Koppensteiner R, Auer M. New forging drive system for radial forging based on double stroke mechanism [J]. BHM Bergund Hüttenmnnische Monatshefte, 2018, 163(9):361-366.

[5]   武哲,柯锋贤,姜旭庆.径向锻造机锤头驱动方式的发展与思考[J].锻压技术,2020,45(8):6-15.

Wu Z, Ke F X, Jiang X Q. Development and thinking of hammer driving mode for radial forging machine[J]. Forging & Stamping Technology, 2020,45(8):6-15.

[6]   牛勇,权晓惠,张营杰.径向锻造油压机电液伺服控制系统建模与仿真[J].锻压技术,2020,45(2):144-152.

Niu Y, Quan X H, Zhang Y J. Modeling and simulation on electro-hydraulic servo control system for radial forging press[J]. Forging & Stamping Technology, 2020,45(2):144-152.

[7]   刘贵明,刘希宽,况怀波.径锻操作机旋转自动控制[J].一重技术,2006,(4):31-32.

Liu G M, Liu X K, Kuang H B. Automatic rotation control to manipulator of radial forging machine [J]. CFHI Technology, 2006, (4):31-32.

[8]   刘贵明,商庆华,孙彤. 液压式径向锻造机的校正[J]. 一重技术, 2006, (2):33-35.

Liu G M,Shang Q H,Song T. Hydraulic radial forging press calibration[J]. CFHI Technology,2006, (2):33-35.

[9]   武哲.径锻机四锤头液压伺服系统的同步特性研究[D].兰州:兰州理工大学,2015.

Wu Z. The Research on the Synchronization Characteristics of the Four Hammer Hydraulic Servo System of the Radial Forging Machine[D]. Lanzhou: Lanzhou University of Technology,2015.

[10]葛鹏. 1.6 MN精锻机主机设计[D].兰州:兰州交通大学,2016.

Ge P. The Design of 1.6 MN Precision Forging Machine [D]. Lanzhou: Lanzhou Jiaotong University,2016.

[11]莫琛. 双锤头径向锻造工艺研究[D].秦皇岛:燕山大学,2018.

Mo C. Research on The Process of Radial Forging with Two Hammers[D]. Qinhuangdao: Yanshan University,2018.

[12]刘英杰,徐兵,杨华勇,等.电液比例负载口独立控制系统压力流量控制策略[J]. 农业机械学报, 2010, 41(5):182-187.

Liu Y J, Xu B, Yang H Y, et al. Strategy for flow and pressure control of electro hydraulic proportional separate meter in and separate meter out control system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(5):182-187.

[13]张宏利,刘吉成,张洪生,等. 隔膜泵新型液压动力端阀控缸速度控制系统数学模型的建立[J]. 机械设计与制造工程, 2017, 46(1):19-23.

Zhang H L, Liu J C, Zhang H S, et al. The control system mathematical modeling of the valve cylinder speed for diaphragm hydraulic pump [J]. Mechanical Design and Manufacturing Engineering, 2017, 46(6):19-23.

[14]郏云涛,田俊. 基于遗传算法的液压伺服系统控制优化[J]. 农业装备与车辆工程, 2021, 59(5):116-118.

Jia Y T,Tian J.Control optimization of hydraulic servo system based on genetic algorithm [J]. Agricultural Equipment & Vehicle Engineering,2021, 59(5):116-118.

[15]阚玉锦,李思遥,丁响林. 基于模糊PID的液压伺服比例控制系统设计[J]. 兰州工业学院学报, 2021, 28(1): 67-71.

Kan Y J,Li S Y,Ding X L.Design of hydraulic servo proportional control system based on fuzzy PID[J]. Journal of Lanzhou Institute of Technology,2021,28(1):67-71.

[16]滕怀海,陈飞,耿树鲲,等.液压伺服系统谐振峰抑制技术研究[J].液压气动与密封,2021,41(5): 44-46.

Teng H H,Chen F,Gen S K, et al Research on reducing resonant peak technology of hydraulic servo system [J]. Hydraulics Pneumatics & Seals, 2021,41(5): 44-46.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9