[1] 蔺永诚,肖逸伟,丁永峰,等. TC系列钛合金锻造及组织性能调控工艺研究进展[J].锻压技术,2021,46(9):22-33.
Lin Y C, Xiao Y W, Ding Y F, et al. Research progress on forging and control technology of microstructure and performance for TC series titanium alloys [J]. Forging & Stamping Technology, 2021, 46(9):22-33.
[2] Mori K, Maki S, Tanaka Y. Warm and hot stamping of ultra high tensile strength steel sheets using resistance heating[J]. CIRP AnnalsManufacturing Technology,2005,54(1):209-212.
[3] Song H, Wang Z J, Gao T J. Effect of high density electropulsing treatment on formability of TC4 titanium alloy sheet[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(1): 87-92.
[4] 门正兴,周杰,王梦寒,等.电阻连续加热成形过程电热力耦合有限元模拟分析[J].热加工工艺,2010,39(19):94-96,101.
Men Z X, Zhou J, Wang M H, et al. Electrothermal coupled finite element simulation analysis of resistance continuous heating forming process[J]. Hot Working Technology, 2010, 39(19):94-96,101.
[5] 刘天骄. 挤压型材拉弯回弹预测与补偿方法研究[D].西安:西北工业大学,2016.
Liu T J. Springback Prediction and Compensation of Extruded Profiles in Stretch Bending[D]. Xi′an: Northwestern Polytechnical University,2016.
[6] Bai Q, Lin J G, Dean T A, et al. Modelling of dominant softening mechanisms for Ti-6Al-4V in steady state hot forming conditions[J]. Materials Science and Engineering, 2013, 559: 352-358.
[7] Yang L, Li N, Wang B Y, et al. Unified constitutive modelling for twophase lamellar titanium alloys at hot forming conditions[J]. Manufacturing Review, 2016, 3:14.
[8] Lin J, Dean T A. Modelling of microstructure evolution in hot forming using unified constitutive equations[J]. Journal of Materials Processing Technology, 2005, 167(2-3):354-362.
[9] Lin J, Liu Y, Farrugia D C J, et al. Development of dislocationbased unified material model for simulating microstructure evolution in multipass hot rolling[J]. Philosophical Magazine, 2005, 85(18): 1967-1987.
[10]Dunne F P E, Nanneh M M, Zhou M. Anisothermal large deformation constitutive equations and their application to modelling titanium alloys in forging[J]. Philosophical Magazine A, 1997, 75(3): 587-610.
[11]Zhou M, Dunne F. Mechanismsbased constitutive equations for the superplastic behaviour of a titanium alloy[J]. Journal of Strain Analysis for Engineering Design, 1996, 31 (3): 187-196.
[12]Zhou M, Clode M P. Constitutive equations for modelling flow softening due to dynamic recovery and heat generation during plastic deformation[J]. Mechanics of Materials, 1998, 27(2): 63-76.
[13]贾翃,逯福生,郝斌. 2017年中国钛工业发展报告[J]. 钛工业进展,2018, 35(2): 1-7.
Jia H, Lu F S, Hao B. 2017 China titanium industry development report[J]. Titanium Industry Progress,2018, 35(2): 1-7.
[14]Mohamed S Mohamed, Alistair D Foster, Lin J G, et al. Investigation of deformation and failure features in hot stamping of AA6082: Experimentation and modelling[J]. International Journal of Machine Tools and Manufacture, 2012, 53(1): 27-38.
[15]Majorell A, Srivatsa S, Picu R C. Mechanical behavior of Ti-6Al-4V at high and moderate temperaturesPart I: Experimental results[J]. Materials Science & Engineering A, 2002, 326(2):297-305.
[16]Picu R C, Majorell A. Mechanical behavior of Ti-6Al-4V at high and moderate temperaturesPart II: Constitutive modeling[J]. Materials Science & Engineering A, 2002, 326(2): 306-316.
[17]Ankem S, Margolin H, Chariles A, et al. Mechanical properties of alloys consisting of two ductile phases[J]. Prog. Mater.Sci., 2006, 51(5): 632-709.
[18]GB/T 228.1—2010, 金属材料 拉伸试验 第1部分:室温试验方法[S].
GB/T 228.1—2010, Metallic material—Tensile testing—Part 1: Method of test at room temperature [S].
|