网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
医用钛合金的微观组织与阻尼性能
英文标题:Microstructure and damping performance for medical titanium alloy
作者:   微1 李振亚2 彭德林3    蓓1 尹春艳1 
单位:1. 安徽机电职业技术学院 2. 中国航空无线电电子研究所 3. 哈尔滨工业大学 
关键词:医用钛合金 TZNM合金 阻尼性能 固溶处理 显微组织 
分类号:TG27
出版年,卷(期):页码:2022,47(1):203-208
摘要:

 为降低医用钛合金的弹性模量、提高阻尼性能,采用水冷铜坩埚感应熔炼技术熔炼TZNM合金,并对样品进行固溶处理。借助扫描电子显微镜、透射电子显微镜、化学分析法、维氏硬度实验、阻尼实验,研究了固溶处理前后TZNM合金的显微组织与力学性能。结果表明:TZNM合金的整体熔炼效果良好,化学成分符合预期设计,为典型的双相α+β型钛合金,其铸态组织形貌为β基体上分布着板条状马氏体α,固溶处理后马氏体α′呈细针状;TZNM合金固溶处理后的维氏硬度为361 HV,比铸态时提高13.6%;随着应变振幅的增大,TZNM合金的内耗逐渐升高,固溶处理前后总体阻尼性能均有不同程度的提升。

 In order to reduce the elastic modulus and improve the damping performance of medical titanium alloy, TZNM alloy was smelted by water-cooled copper crucible induction melting technology, and the sample was treated with solution treatment. Then, the microstructure and mechanical properties of TZNM alloy before and after solution treatment were studied by scanning electron microscope, transmission electron microscope, chemical analysis method, Vickers hardness test and damping test. The results show that TZNM alloy has a good overall melting effect, and its chemical composition meets the expected design. The phase structure is a typical two-phase α+β type titanium alloy, and the microstructure in as-cast is that strip martensite α is distributed on the β matrix, and the martensite α′after  solution treatment is fine needle. In addition, the Vickers hardness of TZNM alloy after solution treatment is 361 HV, which is 13.6% higher than that in as-cast state. As the strain amplitude increases, the internal friction of TZNM alloy gradually increases, and the overall damping performance before and after solution treatment is improved to varying degrees.

基金项目:
2020年安徽省优秀青年人才支持计划重点项目(gxyqZD2020059);安徽省高校省级自然科学重点研究项目(KJ2018A060);安徽省质量工程项目(2019zyk39);地方技能型高水平大学校级特色高水平专业项目(2019tgzy04)
作者简介:
作者简介:王 微(1984-),女,硕士,副教授 E-mail:ahjdww@163.com
参考文献:

 [1]   张永涛,刘汉源,王昌,等.生物医用金属材料的研究应用现状及发展趋势[J].热加工工艺,2017,46(4):21-26.


Zhang Y T, Liu H Y, Wang C, et al. Development trend and research application situation of biomedical metal materials[J]. Hot Working Technology, 2017, 46(4):21-26.

[2]   Pedro Akira Bazaglia Kuroda, Luciano Monteiro Silva, Karolyne dos Santos Jorge Sousa, et al. Preparation, structural, microstructural, mechanical, and cytotoxic characterization of Ti-15Nb alloy for biomedical applications[J]. Artificial Organs,2020, 44(8):811-817.

[3]   胡世文. 钛系生物医用高熵合金的显微组织与性能研究[D].兰州:兰州理工大学,2019.

Hu S W. Study on Microstructure and Properties of Biomedical Titanium Type High Entropy Alloy[D]. Lanzhou: Lanzhou University of Technology, 2019.

[4]   Meng Q K, Xu J D, Li H, et al. Phase transformations and mechanical properties of a Ti36Nb5Zr alloy subjected to thermomechanical treatments [J]. Rare Metals, 2021,(3):1-9. 

[5]   刘建国,周宏博.医用β钛合金的性能研究现状[J].口腔医学研究,2020,36(6):501-508.

Liu J G, Zhou H B. Development of β-type medical titanium alloys′ performance [J].Journal of Oral Science Research, 2020, 36(6):501-508.

[6]   张文毓.生物医用金属材料研究现状与应用进展[J].金属世界,2020,(1):21-27.

Zhang W Y. Research status and application progress of biomedical metal materials[J]. Metal World, 2020,(1):21-27.

[7]   魏芬绒,王海,金旭丹,等.生物医用钛合金材料及其应用[J].世界有色金属,2018,(2):260-262.

Wei F R, Wang H, Jin X D, et al. Biomedical titanium alloy materials and their applications[J]. World Nonferrous Metal, 2018,(2):260-262.

[8]   王强,季洋,徐大可.医用金属材料腐蚀疲劳性能研究进展[J].表面技术,2019,48(7):193-199,210.

Wang Q, Ji Y, Xu D K. Research progress on the corrosion fatigue of biomedical metallic alloys[J]. Surface Technology, 2019, 48(7):193-199,210.

[9]   Pang E L, Pickering E J, Baik S I, et al. The effect of zirconium on the omega phase in Ti-24Nb-[0-8]Zr(at.%) alloys[J]. Acta Materialia, 2018,(153):62-70.

[10]赵杰,马凤仓,刘平,等.退火温度对新型医用Ti-24Nb-4Zr-1.5Co合金组织和性能的影响[J].功能材料,2020,51(7):7027-7032.

Zhao J, Ma F C, Liu P, et al. Effect to annealing temperature on microstructure and properties of Ti-24Nb-4Zr-1.5Co new medical alloy[J]. Journal of Functional Materials, 2020, 51(7):7027-7032.    

[11]李永华,陈楠.多孔Ti-45Nb合金的微观组织与力学性能研究[J].井冈山大学学报:自然科学版,2019,40(5):67-71.   

Li Y H, Chen N. Research on microstructure and mechanical property of porous Ti-45Nb alloy[J]. Journal of Jinggangshan University:Natural Science, 2019, 40(5):67-71.

[12]张婷. 典型医用钛合金材料电子结构及力学性能研究[J]. 功能材料与器件学报,2020,26(1):35-40.

Zhang T. Electrical and mechanical properties of typical medical metal materials[J]. Journal of Functional Materials and Devices, 2020,26(1):35-40.

[13]刘超,孔祥吉,吴胜文,等.生物医用Ti6Al4V合金注射成形研究[J].粉末冶金工业, 2019, 29(2):7-11.

Liu C, Kong X J, Wu S W, et al. Study on powder injection molding of Ti6Al4V alloys for biomedical application[J].Powder Metallurgy Industry, 2019, 29(2):7-11.

[14]王微. Ti-12Nb-12Zr-2Mo合金精密铸件组织性能研究[D].哈尔滨:哈尔滨工业大学,2011.

Wang W. Research on Microstructure and Properties of Ti-12Nb-12Zr-2Mo Properties of Alloy Precision Casting [D]. Harbin:Harbin Institute of Technology, 2011.

[15]辛设伟,赵勇庆.关于钛合金热处理和析出相的讨论[J].金属热处理,2006,31(9):39-42.

Xin S W, Zhao Y Q. Discussion about the heat treatment and precipitated phases of titanium alloy[J]. Heat Treatment of Metals,2006,31(9):39-42.

[16]周邦彦.钛合金铸造概论[M].北京:航空工业出版社,2000.

Zhou B Y. Introduction to Casting Titanium Alloy [M]. Beijing:Aviation Industry Press,2000.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9