[1] 俞燕明,饶锡新,刘勇,等.有色金属及合金表面机械研磨处理的研究进展[J].热加工工艺, 2016, 45(6): 36-41.
Yu Y M, Rao X X, Liu Y, et al. Research progress of surface mechanical grinding of non-ferrous metals and alloys [J]. Hot Working Technology, 2016, 45(6): 36-41.
[2] 蔡辉.5052铝合金材料研究进展[J].铝加工,2011,(6):33-39.
Cai H. Research progress of 5052 aluminum alloy materials [J]. Aluminium Fabrication, 2011,(6): 33-39.
[3] 刘勇,耿会程,朱彬,等.高强铝合金高效热冲压工艺研究进展[J].锻压技术,2020,45(7):1-12.
Liu Y, Geng H C, Zhu B, et al. Research progress of high efficiency hot stamping process for high strength aluminum alloy [J]. Forging & Stamping Technology, 2020, 45(7): 1-12.
[4] 田鹏,刘宝胜,陈福龙,等.5A06铝合金端板构件成形工艺优化[J].锻压技术,2020,45(4):76-86.
Tian P, Liu B S, Chen F L, et al. Optimization of forming process for 5A06 aluminum alloy end plate components [J]. Forging & Stamping Technology, 2020, 45(4): 76-86.
[5] 王春明,杨牧南,黄建辉,等. 镁合金表面自纳米化研究进展及现状[J].材料导报,2019,33(13):2260-2265.
Wang C M, Yang M N, Huang J H, et al. Research progress and current situation of surface self nanocrystallization of magnesium alloys [J]. Materials Review, 2019, 33(13): 2260-2265.
[6] 康燕平,李元东,王晓东,等. 镁、铝合金表面自纳米化研究现状[J].材料导报,2011,25(23):20-24.
Kang Y P, Li Y D, Wang X D, et al. Research status of surface self nanocrystallization of magnesium and aluminum alloys [J]. Materials Review, 2011, 25(23): 20-24.
[7] 赵海涛,刘超.时效时间对表面机械研磨处理Cu-4.5Ti合金组织和硬度的影响[J].粉末冶金技术,2020,38(2):92-97.
Zhao H T, Liu C. Effect of aging time on microstructure and hardness of Cu-4.5Ti alloy after surface mechanical grinding [J]. Powder Metallurgy Technology, 2020, 38(2): 92-97.
[8] 范淇元,覃羡烘.表面机械研磨对AZ31镁合金显微组织和性能的影响[J].热加工工艺,2019,48(18):108-110.
Fan Q Y, Qin X Y. Effect of surface mechanical grinding on microstructure and properties of AZ31 magnesium alloy [J]. Hot Working Technology, 2019, 48(18): 108-110.
[9] Zhang Y L, Yang C, Zhou D S, et al. Effect of stacking fault energy on microstructural feature and back stress hardening in Cu-Al alloys subjected to surface mechanical attrition treatment[J]. Materials Science and Engineering:A,2019, 740-741:235-242.
[10]袁建梁,刘泽鹏,闫志峰,等.超声表面机械研磨处理对6061铝合金FSW接头疲劳行为的影响[J].焊接,2019,(7):34-39.
Yuan J L, Liu Z P, Yan Z F, et al. Effect of ultrasonic surface mechanical polishing on fatigue behavior of 6061 aluminum alloy FSW joint [J]. Welding, 2019, (7): 34-39.
[11]赵重阳,宁江利,徐博,等.AZ31镁合金在表面机械研磨过程中组织的演变[J].轻合金加工技术,2019,47(3):42-47.
Zhao C Y, Ning J L, Xu B, et al. Microstructure evolution of AZ31 magnesium alloy during surface mechanical grinding [J]. Light Alloy Fabrication Technology, 2019,47(3): 42-47.
[12]Eidivandi S, Boroujeny B S, Dustmohammadi A, et al. The effect of surface mechanical attrition treatment (SMAT) time on the crystal structure and electrochemical behavior of phosphate coatings [J]. Journal of Alloys and Compounds, 2020, 821:153252-153260.
[13]Meng X, Liu B, Luo L, et al. The Portevin-Le Chatelier effect of gradient nanostructured 5182 aluminum alloy by surface mechanical attrition treatment [J]. Journal of Materials Science & Technology, 2018, 34(12): 2307-2315.
[14]徐颖宣,孟祥晨,李根,等.表面机械研磨处理5182铝合金的组织和力学性能研究[J].中国材料进展, 2017, 36(2): 122-125.
Xu Y X, Meng X C, Li G, et al. Study on microstructure and mechanical properties of 5182 aluminum alloy by surface mechanical grinding [J]. Rare Metals Letters, 2017, 36(2): 122-125.
[15]Gao T, Sun Z, Xue H, et al. Effect of surface mechanical attrition treatment on high cycle and very high cycle fatigue of a 7075-T6 aluminium alloy [J]. International Journal of Fatigue, 2020, 139: 105798-105804.
[16]Zhang Z, Li Y, Peng J, et al. Combining surface mechanical attrition treatment with friction stir processing to optimize the mechanical properties of a magnesium alloy[J]. Materials ence and Engineering, 2019, 756(22):184-189.
|