[1] 邓凡,刘彦强,樊建中,等.基于数字图像相关技术的泡沫铝复合结构的弯曲行为研究[J].稀有金属,2021,45(3):297-305.
Deng F, Liu Y Q, Fan J Z, et al. Observation of bending behavior of aluminum foam composite structure based on digital image correlation technology[J]. Chinese Journal of Rare Metals, 2021,45(3):297-305.
[2] 陶显,侯伟,徐德.基于深度学习的表面缺陷检测方法综述[J/OL].自动化学报:1-19[2020-10-11]. http://kns.cnki.net/kcms/detail/11.2109.TP.20200402.1101.002.html.
Tao X, Hou W, Xu D. A survey of surface defectdetection methods based on deep learning[J/OL]. Acta Automatica Sinica: 1-19[2020-10-11]. http://kns.cnki.net/kcms/detail/11.2109. TP.20200402.1101.002.html.
[3] 李兰,奚舒舒,张才宝,等.基于改进SSD模型的工件表面缺陷识别算法[J].计算机工程与科学,2020,42(9):1608-1615.
Li L, Xi S S, Zhang C B, et al. A surface defect recognition algorithm based on improver SSD model[J]. Computer Engineering and Science, 2020, 42(9): 1608-1615.
[4] 袁野,谭晓阳.复杂环境下的冰箱金属表面缺陷检测[J/OL].计算机应用:1-6[2020-09-22].
Yuan Y, Tan X Y. Defect detection of refrigerator metal surface in complex environment[J].Journal of Computer Applications: 1-6[2020-09-22].
[5] 李春霖,谢刚,王银,等.基于YOLOv3-TinyD算法的偏光片缺陷检测[J/OL].计算机集成制造系统:1-17[2020-09-23].
Li C L, Xie G, Wang Y, et al. Defect detection of polaroid based on YOLOv3-TinyD[J/OL]. Computer Interated Manufacturing Systems: 1-17[2020-09-23].
[6] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[A]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C]. Washington D. C. : IEEE Press, 2016.
[7] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: Optimal speed and accuracy of object detection[EB/OL]. https://github.com/AlexeyAB/darknet, 2020.
[8] He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2015,37(9):1904-1916.
[9] Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation[A]. IEEE/CVF Conference on Computer Vision and Pattern Recognition[C]. Washington D. C. : IEEE Press, 2018.
[10]Howard A, Sandler M, Chen B, et al. Searching for MobileNetV3[A]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV)[C]. Seoul: IEEE, 2020.
[11]Elsken T, Metzen J H, Hutter F. Neural architecture search: A survey[J].Journal of Machine Learning Research,2019,20:1-21.
[12]Howard A G, Zhu M, Chen B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[A]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C]. Hawaii: IEEE, 2017.
[13]Sandler M, Howard A, Zhu M, et al. MobileNetV2: Inverted residuals and linear bottlenecks[A]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C]. Salt Lake City: IEEE, 2018.
[14]Hu J, Shen L, Sun G, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(8):7132-7141.
[15]Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multi box detector[A]. Proc of European Conference on Computer Vision[C]. Berlin: Springer, 2016.
|