网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
TA15钛合金大型锻件“中心亮线”组织缺陷形成及抑制措施
英文标题:Formation and control measures on microstructure defect of “center bright line” for TA15 titanium alloy large forgings
作者:王德勇 莫安军 杨立新 闵武 魏明刚 余胜峰 栗文强 谢静 
单位:沈阳飞机工业(集团)有限公司 中国第二重型机械集团德阳万航模锻有限责任公司 
关键词:TA15钛合金 大型锻件 中心亮线 微观组织 力学性能 
分类号:TG316.2
出版年,卷(期):页码:2022,47(2):25-29
摘要:

 通过工艺试验研究了热变形过程中TA15钛合金大型锻件的组织性能演变规律。结果表明:TA15钛合金在950、965和980 ℃的条件下进行热变形,变形量过大,锻件中心部位发生显著再结晶细化,形成“双套”组织。新生α相组织约为3~5 μm,与初生α相组织(约为10 μm)存在显著差异,从而导致了锻件低倍组织呈现出“中心亮线”组织缺陷,该组织缺陷所在区域的强度和塑性等力学性能比正常区域低。同时,发现随着变形温度上升,变形量降低至80%以下,可抑制组织缺陷的产生、提高锻件性能。通过探究“中心亮线”组织缺陷的形成原因,获得了抑制组织缺陷产生的工艺条件,为高性能大型钛合金整体锻件成形制造提供了依据。

 The evolution law of microstructure and properties for TA15 titanium alloy large forgings during thermal deformation process was studied by process test. The results show that when TA15 titanium alloy undergoes thermal deformation at 950,965 and 980 ℃, excessive thermal deformation occurs, and the significant recrystallization refinement in the center of forgings is found to form a “double set” structure. Furthermore, the new α-phase structure is about 3-5 μm, which is significantly different from the primary α-phase structure (about 10 μm ), resulting in microstructure defects of “center bright line” in the macrostructure of forgings, and the mechanical properties such as strength and plasticity in the microstructure defects region are lower than those in the normal region. Meanwhile, it is found that with the increasing of temperature, the deformation amount decreases to less than 80%, and the generation of microstructure defects is inhibited and the performance of forgings is improved. So by exploring the formation reason of “center bright line” microstruture defects, the process conditions of suppressing microstructure defects are obtained, which provides a basis for the forming of high performance large titanium alloy integral forgings. 

基金项目:
国家工信部2018年绿色制造系统集成项目
作者简介:
作者简介:王德勇(1987-),男,学士,工程师,E-mail:547462166@163.com;通信作者:莫安军(1982-),男,博士,高级工程师,E-mail:moanjun@163.com
参考文献:

[1]苏亚东, 吴斌, 王向明. 增材制造技术在航空装备深化应用中的研究[J]. 航空制造技术, 2016(12): 42-48.


Su Y D, Wu B, Wang X M. Research on further application of additive manufacturing technology on aviation equipment[J]. Aeronautical Manufacturing Technology, 2016(12): 42-48.


[2]何忝锜, 米磊,郭凯,.航空钛合金锻造技术的研究进展[J].世界有色金属,2021,(9):113-114.


He T Q,Mi L,Guo K,et al.Research progress of aviation titanium alloy forging technology[J].World Nonferrous Metals2021,(9):113-114.


[3]冯军. 大型民机起落架的发展趋势与关键技术[J]. 航空制造技术, 2009(2): 52-5456.


Feng J. Development trend and key technologies of landing gear of large civil aircraft[J]. Aeronautical Anufacturing Technology, 2009(2): 52-5456.


[4]文柏衡, 黄艳松, 李建军, . 某航空发动机拉杆锻造工艺研究[J]. 机械工程师, 2014(11): 32-34.


Wen B H, Huang Y S, Li J J, et al. Technique research on forging of pull rod in aero-engine[J]. Mechanical Engineer, 2014(11): 32-34.


[5]周晓虎, 刘卫, 郝芳, . β锻造工艺对TC21钛合金大型锻件组织及性能的影响[J]. 锻压技术, 2020, 45(6): 29-3444.


Zhou X H, Liu W, Hao F, et al. Influence of quasi-β forging process on microstructure and properties of TC21 titanium alloy large forgings[J]. Forging & Stamping Technology, 2020, 45(6): 29-3444.


[6]朱知寿. 航空结构用新型高性能钛合金材料技术研究与发展[J]. 航空科学技术, 2012, (1): 5-9.


Zhu Z S. Research and development of advanced new type titanium alloys for aeronautical applications[J]. Aeronautical Science and Technology2012, (1): 5-9.


[7]孙勇, 李付国, 梁岱春, . 航空航天大型环锻件智能产线管控与集成技术[J]. 锻压技术, 2020, 45(5): 192-197.


Sun Y, Li F G, Liang D C, et al. Intelligent line control and integration technology in aerospace large-scale ring forgings[J]. Forging & Stamping Technology, 2020, 45(5): 192-197.


[8]王富强, 杨立新, 王德勇, . TA15钛合金大型锻坯工艺及组织与性能研究[J]. 热加工工艺, 2020, 49(13): 19-23.


Wang F Q, Yang L X, Wang D Y, et al. Research on technology and microstructure and properties of TA15 titanium alloy large-size forging billet [J]. Hot Working Technology, 2020, 49(13): 19-23.


[9]张旺峰, 王玉会, 李兴无. 变截面TA15钛合金大锻件初生α相控制与定量估算方法[J]. 钛工业进展, 2020,37(1): 37-41.


Zhang W F, Wang Y H, Li X W, et al. Quantitative calculation and control of primary α phase for the variable sections in large TA15 titanium alloy forging [J]. Titanium Industry Progress, 2020, 37(1): 37-41.


[10]闵新华, 纪仁峰. 锻造工艺对TA15钛合金扁坯组织和力学性能的影响[J]. 钛工业进展, 2016, 33(6): 36-39.


Min X H, Ji R F. Effect of forging process on microstructure and mechanical properties of TA15 titanium alloy slab[J]. Titanium Industry Progress, 2016, 33(6): 36-39.


[11]王相钩, 王大勇, 王培涛, . 连接杆头模锻工艺参数优化研究[J]. 塑性工程学报, 2019, 26(6): 36-41.


Wang X JWang D Y,Wang P T, et al. Process parameters optimization of die forging for connecting rod head[J]. Journal of Plasticity Engineering, 2019, 26(6): 36-41.


[12]姚泽坤, 孙红兰, 张东亚, . 工艺参数组合对TA7钛合金拉伸性能的影响[J]. 重型机械, 2012(3): 74-77.


Yao Z K, Sun H L, Zhang D Y, et al. Effect of process parameters on tensile property of TA7 titanium alloy [J]. Heavy Machinery, 2012, (3): 74-77.


[13]蔡建明, 曹春晓, 马济民, . TC11钛合金异常双态组织的形成及控制[J]. 稀有金属材料与工程, 2005343: 517-521.


 


Cai J M, Cao C X, Mao J M, et al. Forming and restricting for α particle with abnormal shapes of duplex structure for TC11 titanium alloy[J]. Rare Metal Materials and Engineering, 2005,343: 517-521.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9