网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
连杆衬套强力旋压成形的多目标优化与决策
英文标题:Multi-object optimization and decision on power spinning for connecting rod bushing
作者:张冰 徐嘉锋 
单位:许昌职业技术学院 
关键词:连杆衬套 强力旋压 圆柱度误差 壁厚偏差 Pareto前沿解 加权相对距离 非支配排序遗传算法 
分类号:TG306
出版年,卷(期):页码:2022,47(2):119-125
摘要:

 为了减小连杆衬套强力旋压成形的圆柱度误差和壁厚偏差,提出了基于加权相对距离的最优解决策策略。介绍了连杆衬套的强力旋压成形工艺,以减小圆柱度误差和壁厚偏差为目标建立了多目标优化模型。使用RBF神经网络和有限元仿真软件拟合了工艺参数与目标参数之间的函数关系,经验证RBF神经网络的拟合精度较高。使用非支配排序遗传算法对多目标优化模型进行求解,得到了Pareto前沿解集。建立了理想解和不理想解的概念,提出了基于加权相对距离的最优解决策方法。经生产验证,优化后的圆柱度误差均值比厂家生产的圆柱度误差均值减小了23.16%,壁厚偏差均值减小了23.94%,且两个质量参数的标准差也有所下降。实验结果说明:优化后的连杆衬套圆柱度误差和壁厚偏差均有所减小,且生产稳定性有所提高。

 In order to reduce the cylindricity error and wall thickness deviation of connecting rod bushing in power spinning, an optimal solution decision-making strategy based on weighted relative distance was proposed. Then, the power spinning process of connecting rod bushing was introduced, and a multi-objective optimization model was established to reduce the cylindricity error and wall thickness deviation. Furthermore, the functional relationship between process parameters and target parameters was fit by RBF neural network and finite element simulation software, and the fitting accuracy of RBF neural network was verified to be higher. In addition, the multi-objective optimization model was solved by the non-dominant sorting genetic algorithm to obtain Pareto frontier solution set, and the concepts of ideal solution and non-ideal solution were established to propose the optimal solution decision-making method based on weighted relative distance. Through production verification, after optimization the mean value of cylindricity error was reduced by 23.16% compared with the mean value of cylindricity error produced by the manufacturer, the mean value of wall thickness deviation was reduced by 23.94%, and the standard deviation of the two quality parameters was also reduced. The experimental results show that the cylindricity error and wall thickness deviation of the optimized connecting rod bushing are reduced, and the production stability is improved.

基金项目:
河南省科技攻关项目(1821022100508)
作者简介:
作者简介:张冰(1982-),男,硕士,讲师,E-mail:wcdmcu@163.com
参考文献:

[1]郭佩剑,樊文欣,李志伟,. 基于灰色关联度的筒形件二道次强力旋压工艺参数优化[J].锻压技术,2020,45(4):108-113.


Guo P J, Fan W X, Li Z W, et al. Optimization on two-pass power spinning process parameters for cylindrical parts based on grey correlation degree [J]. Forging & Stamping Technology, 2020,45(4):108-113.


[2]高帅,赵俊生,李志伟,. 基于Simufact的强力热旋压连杆衬套成形精度研究[J].塑性工程学报,2020,27(10):40-47.


Gao S Zhao J S, Li Z W, et al. Study on forming accuracy of hot power spinning connecting rod bushing based on Simufact [J]. Journal of Plasticity Engineering, 2020,27(10):40-47.


[3]李岳桥,樊文欣,张厚组,. 基于响应曲面法的强力旋压QSn7-0.2连杆衬套屈服强度研究[J].塑性工程学报,2020,27(6):72-78.


Li Y Q, Fan W X, Zhang H Z, et al. Research on yield strength of QSn7-0.2 connecting rod bushing by power spinning based on response surface method [J]. Journal of Plasticity Engineering, 2020,27(6):72-78.


[4]束学道,岑泽伟,王雨,. GH3030高温合金壁厚渐变锥形回转件强力旋压成形仿真及机理分析[J].西北工业大学学报,2019,37(4):785-793.


Shu X D, Cen Z W, Wang Y, et al. Exploring strong spinning formation mechanisms of GH3030 superalloy tapered rotary part with wall thickness gradient [J]. Journal of Northwestern Polytechnical University, 2019,37(4):785-793.


[5]汤传尧,樊文欣,郭芳. 采用灰色关联法优化强力旋压连杆衬套旋轮参数的研究[J].热加工工艺,2018,47(3):129-132.


Tang C Y, Fan W X, Guo F. Study on power spinning rod bushing roller parameters optimized by using grey correlation method [J]. Hot Working Technology, 2018,47(3):129-132.


[6]贾岩峰,樊文欣,邵晓宙,. 基于Taguchi方法的滑动轴承二道次旋压工艺参数优化[J].特种铸造及有色合金,2020,40(4):379-382.


Jia Y F, Fan W X, Shao X Z, et al. Optimization of two-pass spinning process parameters of sliding bearing based on Taguchi algorithm[J]. Special Casting & Nonferrous Alloys, 2020,40(4):379-382.


[7]张宏伟. 基于响应面的车用连接板拉延成形性能及优化[J].中国科技论文,2020,15(2):240-243.


Zhang H W. Drawing formability and optimization of vehicle connecting plate based on response surface method [J]. China Sciencepaper, 2020,15(2):240-243.


[8]魏鑫,王雷刚,王钊,. 基于响应面法的汽车后轮罩工艺参数优化[J].锻压技术,2021,46(10):70-77.


Wei X, Wang L G, Wang Z, et al. Optimization on process parameters for automobile rear wheel cover based on response surface method [J]. Forging & Stamping Technology, 2021,46(10):70-77.


[9]李姝. 基于Simufact滑动轴承强力旋压成形仿真研究[D]. 太原:中北大学,2020.


Li S. Research on Forming Simulation of Power Spinning of Sliding Bearing Based on Simufact [D]. Taiyuan: North University of China, 2020.


[10]赵宏凯,蒋科坚. 基于RBF神经网络的电磁轴承基础激励主动控制研究[J].机电工程,2020,37(12):1425-1431.


Zhao H K, Jiang K J. Active control for the base motion of active magnetic bearings based on RBF neural network [J]. Journal of Mechanical & Electrical Engineering, 2020,37(12):1425-1431.


[11]Rajeswari D, Prakash M, Suresh J. Computational grid scheduling architecture using MapReduce model-based non-dominated sorting genetic algorithm[J]. Soft Computing 2019, 23(18):8335-8347.


[12]赵志彪,刘浩然,刘彬,. 改进非支配排序精英遗传算法的篦冷机参数优化[J].控制与决策,2020,35(5):1217-1225.


 


Zhao Z B, Liu H R, Liu B, et al. Optimization of grate cooler parameters based on improved no-dominated sorting genetic algorithm II [J]. Control and Decision, 2020,35(5):1217-1225.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9