网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
挤压态镁合金热压缩微观组织预测模型
英文标题:Prediction model on microstructure for as-extruded magnesium alloy in thermal compression
作者:丁小凤 蒯玉龙 胡建华 双远华 
单位:太原科技大学 
关键词:AZ31镁合金 热压缩 动态再结晶 临界应变 微观组织 预测模型 
分类号:TG335.71
出版年,卷(期):页码:2022,47(2):199-206
摘要:

 在变形温度为250~450 ℃、应变速率为0.005~5 s-1的条件下,采用热模拟压缩实验得到流动应力-应变曲线,研究了挤压态镁合金热变形和动态再结晶行为。结果表明:AZ31镁合金发生动态再结晶的临界应变随着变形温度的升高或应变速率的减小而降低;镁合金变形初期发生动态再结晶所需要的激活能为191.2 kJ·mol-1。基于实验数据回归分析,建立AZ31镁合金动态再结晶临界应变模型,得到动态再结晶临界应变与流动应力曲线峰值应变的比值约为0.57;应用Avrami方程建立镁合金动态再结晶动力学模型,预测出镁合金动态再结晶临界应变值,与微观组织实验结果一致,验证了模型的正确性,可以用于AZ31镁合金热加工中的动态再结晶预测。

 Under the conditions of the deformation temperatures of 250-450 ℃ and the strain rates of 0.005-5 s-1, the flow stress-strain curves were obtained by thermal simulation compression experiment, and the thermal deformation and dynamic recrystallization behavior of as-extruded magnesium alloy were investigated. The results show that the critical strain of dynamic recrystallization for AZ31 magnesium alloy decreases with the increasing of deformation temperature or the decreasing of strain rate, and the activation energy required for dynamic recrystallization in the initial deformation of magnesium alloy is 191.2 kJ·mol-1. Based on the regression analysis of experimental data, the dynamic recrystallization critical strain model of AZ31 magnesium alloy was established, and the ratio of dynamic recrystallization critical strain  to peak strain in the rheological flow stress curve was about 0.57. Furthermore, the dynamic recrystallization kinetics model of magnesium alloy was established by Avrami equation to predict the critical strain value of dynamic recrystallization for magnesium alloy, which was consistent with the results of microstructure experiments. Thus, the correctness of the model was verified, and the model could predict dynamic recrystallization in the hot working of AZ31 magnesium alloy.

基金项目:
山西省优秀来晋博士人员科研资助(20202002);山西省高校科技创新项目(2019L0626);太原科技大学科研启动金(20182043);山西省科技重大专项(20191102009)
作者简介:
作者简介:丁小凤(1987-),女,博士,副教授,E-mail:dingxiaofeng@tyust.edu.cn
参考文献:

 [1]Ding X F, Zhao F Q, Shuang Y H, et al. Characterization of hot deformation behavior of as-extruded AZ31 alloy through kinetic analysis and processing maps[J]. Journal of Materials Processing Technology, 2020, 2766: 116325.


[2]丁小凤, 双远华, 林伟路,. 挤压态镁合金流变行为及本构模型研究[J]. 塑性工程学报, 2017, 24(6):165-171.


Ding X F, Shuang Y H, Lin W L, et al. Study on the flow behavior and constitutive model of extruded magnesium alloy[J]. Journal of Plastic Engineering, 2017, 24(6):165-171.


[3]丁小凤, 双远华, 王清华,等. AZ31 镁合金无缝管斜轧穿孔新工艺研究[J]. 稀有金属材料与工程, 2018, 47(1): 357-362.


Ding X F, Shuang Y H, Wang Q H, et al. New rotary piercing process for an AZ31 magnesium alloy seamless tube [J]. Rare Metal Materials and Engineering, 2018, 47(1): 357-362.


[4]Sun Y, Hu L X, Ren J S. Modeling the constitutive relationship of powder metallurgy Ti-47Al-2Nb-2Cr alloy during hot deformation[J]. Journal of Materials Engineering and Performance, 2015, 24(3):1313-1321.


[5]万志鹏, 孙宇, 胡连喜, . TiAl基合金动态再结晶临界模型建立[J]. 稀有金属材料与工程, 2018, 47(3):835-839.


Wan Z P, Sun Y, Hu L X, et al. Modeling of the critical conditions on dynamic recrystallization for TiAl-based alloy[J]. Rare Metal Materials and Engineering, 2018, 47(3):835-839.


[6]Ying H, Liu G W, Zou D N, et al. Deformation behavior and microstructural evolution of as-cast 904L austenitic stainless steel during hot compression[J]. Materials Science & Engineering A, 2013, 565:342-350.


[7]Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization[J]. Acta Materialia, 1996, 44(1): 127-136.


[8]Xu Y, Hu L X, Sun Y. Deformation behaviour and dynamic recrystallization of AZ61 magnesium alloy[J]. Journal of Alloys and Compounds, 2013, 580: 262-269.


[9]Xia Y F, Liu Y Y, Mao Y P, et al. Determination of critical parameters for dynamic recrystallization in Ti-6Al-2Zr-1Mo-1V alloy[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(s3): 668-672.


[10]Wang S L, Zhang M X, Wu H C, et al. Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel[J]. Materials Characterization, 2016, 118: 92-101.


[11]Sellars C M. Modelling microstructural development during hot rolling[J]. Materials Science and Technology, 1990, 6(11):1072-1081.


[12]Kim S I, Yoo Y C. Dynamic recrystallization behavior of AISI 304 stainless steel[J]. Materials Science and Engineering: A, 2001, 311(1-2): 108-113.


[13]Stewart G R, Elwazri A M, Yue S, et al. Modelling of dynamic recrystallisation kinetics in austenitic stainless and hypereutectoid steels[J]. Materials Science and Technology, 2006, 22(5):519-524.


[14]黄飚,王振军,陈智,等. 铸态镁合金AZ91D热压缩微观组织演变本构模型[J]. 塑性工程学报, 2017, 24(5):103-112.


Huang B, Wang Z J, Chen Z, et al. Constitutive model for microstructure evolution of as-cast magnesium alloy AZ91D during hot compression[J]. Journal of Plastic Engineering, 2017, 24(5):103-112.


[15]Shi H, McLaren A J, Sellsrs C M. Constitutive equations for high temperature flow stress of aluminum alloys [J]. Materials Science and Technology, 1997, 13(3): 210- 216.


[16]丁小凤. 镁合金无缝管斜轧穿孔成形机理与实验研究[D].太原:太原科技大学,2018.


Ding X F. Forming Mechanism and Experimental Research of Rotary Piercing for Magnesium Alloy Seamless Tube[D]. TaiyuanTaiyuan University of Science and Technology2018.


[17]Shaban M, Eghbali B. Determination of critical conditions for dynamic recrystallization of a microalloyed steel[J]. Materials Science and Engineering: A, 2010, 527(16): 4320-4325.


[18]Jonas J J, Quelennec X, Jiang L, et al. The Avrami kinetics of dynamic recrystallization[J]. Acta Materialia, 2009, 57(9):2748-2756.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9