[1]Ding X F, Zhao F Q, Shuang Y H, et al. Characterization of hot deformation behavior of as-extruded AZ31 alloy through kinetic analysis and processing maps[J]. Journal of Materials Processing Technology, 2020, 276(6): 116325.
[2]丁小凤, 双远华, 林伟路,等. 挤压态镁合金流变行为及本构模型研究[J]. 塑性工程学报, 2017, 24(6):165-171.
Ding X F, Shuang Y H, Lin W L, et al. Study on the flow behavior and constitutive model of extruded magnesium alloy[J]. Journal of Plastic Engineering, 2017, 24(6):165-171.
[3]丁小凤, 双远华, 王清华,等. AZ31 镁合金无缝管斜轧穿孔新工艺研究[J]. 稀有金属材料与工程, 2018, 47(1): 357-362.
Ding X F, Shuang Y H, Wang Q H, et al. New rotary piercing process for an AZ31 magnesium alloy seamless tube [J]. Rare Metal Materials and Engineering, 2018, 47(1): 357-362.
[4]Sun Y, Hu L X, Ren J S. Modeling the constitutive relationship of powder metallurgy Ti-47Al-2Nb-2Cr alloy during hot deformation[J]. Journal of Materials Engineering and Performance, 2015, 24(3):1313-1321.
[5]万志鹏, 孙宇, 胡连喜, 等. TiAl基合金动态再结晶临界模型建立[J]. 稀有金属材料与工程, 2018, 47(3):835-839.
Wan Z P, Sun Y, Hu L X, et al. Modeling of the critical conditions on dynamic recrystallization for TiAl-based alloy[J]. Rare Metal Materials and Engineering, 2018, 47(3):835-839.
[6]Ying H, Liu G W, Zou D N, et al. Deformation behavior and microstructural evolution of as-cast 904L austenitic stainless steel during hot compression[J]. Materials Science & Engineering A, 2013, 565:342-350.
[7]Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization[J]. Acta Materialia, 1996, 44(1): 127-136.
[8]Xu Y, Hu L X, Sun Y. Deformation behaviour and dynamic recrystallization of AZ61 magnesium alloy[J]. Journal of Alloys and Compounds, 2013, 580: 262-269.
[9]Xia Y F, Liu Y Y, Mao Y P, et al. Determination of critical parameters for dynamic recrystallization in Ti-6Al-2Zr-1Mo-1V alloy[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(s3): 668-672.
[10]Wang S L, Zhang M X, Wu H C, et al. Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel[J]. Materials Characterization, 2016, 118: 92-101.
[11]Sellars C M. Modelling microstructural development during hot rolling[J]. Materials Science and Technology, 1990, 6(11):1072-1081.
[12]Kim S I, Yoo Y C. Dynamic recrystallization behavior of AISI 304 stainless steel[J]. Materials Science and Engineering: A, 2001, 311(1-2): 108-113.
[13]Stewart G R, Elwazri A M, Yue S, et al. Modelling of dynamic recrystallisation kinetics in austenitic stainless and hypereutectoid steels[J]. Materials Science and Technology, 2006, 22(5):519-524.
[14]黄飚,王振军,陈智,等. 铸态镁合金AZ91D热压缩微观组织演变本构模型[J]. 塑性工程学报, 2017, 24(5):103-112.
Huang B, Wang Z J, Chen Z, et al. Constitutive model for microstructure evolution of as-cast magnesium alloy AZ91D during hot compression[J]. Journal of Plastic Engineering, 2017, 24(5):103-112.
[15]Shi H, McLaren A J, Sellsrs C M. Constitutive equations for high temperature flow stress of aluminum alloys [J]. Materials Science and Technology, 1997, 13(3): 210- 216.
[16]丁小凤. 镁合金无缝管斜轧穿孔成形机理与实验研究[D].太原:太原科技大学,2018.
Ding X F. Forming Mechanism and Experimental Research of Rotary Piercing for Magnesium Alloy Seamless Tube[D]. Taiyuan:Taiyuan University of Science and Technology,2018.
[17]Shaban M, Eghbali B. Determination of critical conditions for dynamic recrystallization of a microalloyed steel[J]. Materials Science and Engineering: A, 2010, 527(16): 4320-4325.
[18]Jonas J J, Quelennec X, Jiang L, et al. The Avrami kinetics of dynamic recrystallization[J]. Acta Materialia, 2009, 57(9):2748-2756.
|