网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
不同变形量对Cu-2Ag合金组织和性能的影响
英文标题:Influence of different deformation amounts on microstructure and properties of Cu-2Ag alloy
作者:周菲1 张彦敏1 2 宋克兴1 2 高红姣1 
单位:1.河南科技大学 材料科学与工程学院 2.河南省有色金属材料科学与加工技术重点实验室 
关键词:冷轧 Cu-2Ag合金 显微组织 导电率 力学性能 
分类号:
出版年,卷(期):页码:2022,47(3):206-210
摘要:

 总变形量一定的前提下,采用不同道次、不同变形量对Cu-2Ag合金棒材进行轧制变形,研究了不同变形工艺对Cu-2Ag合金微观组织结构和导电性能、力学性能的影响。结果表明,总变形量一定时,各道次变形量的分配对合金性能的影响不同,导电率和硬度分别为:工艺182.75%IACS170.34 HV;工艺283.62%IACS174.82 HV;工艺382.72%IACS180.26 HV。实验条件下,第1道次轧制变形量越大(60%),合金的综合性能更优。轧制前合金的微观组织以交错分布的网状枝晶形态为主;轧制变形后,枝晶出现不同程度的变形,这是导致合金性能不同的主要原因。平行于轧制方向的微观组织以连续排列的“鱼骨”状枝晶形态为主;轧制变形后,枝晶间距增加。试验范围内,采用工艺3变形后,合金的硬导积达到0.989,综合性能较好。

 When the total deformation was constant, Cu-2Ag alloy bars were rolled and deformed by different passes and different deformation amounts, and the influences of different deformation processes on the microstructure, electrical conductivity and mechanical properties of Cu-2Ag alloy were studied. The results show that the distribution of deformation amount in each pass has different effects on the properties of the alloy when the total deformation is constant. The results of conducivity and hardness are as follows: Process 182.75% IACS, 170.34 HV; Process 283.62% IACS, 174.82 HV; Process 382.72% IACS, 180.26 HV. Under the experimental conditions, the larger the rolling deformation (60%) of the first pass is, the better the comprehensive properties of the alloy are. The microstructure of the alloy before rolling is dominated by staggered network dendrites, and after rolling deformation, the dendrites are deformed to different degrees, which is the main reason for the different properties of the alloy. However, the microstructure parallel to the rolling direction is dominated by continuously arranged “fishbone” dendrites, and after rolling deformation, the dendrite spacing increases. Within the test range, after the deformation of Process 3, the hard conductivity of the alloy reaches 0.989, and its comprehensive properties are good.

基金项目:
河南省重大科技专项(创新引领专项)(191110210400)
作者简介:
周菲(1998-),女,硕士研究生 E-mail:zhoufei_0526@163.com 通信作者:张彦敏(1970-),女,博士,教授 E-mail:zhangmin70@163.com
参考文献:

 [1]尹志民, 张生龙.高强高导铜合金研究热点及发展趋势[J].矿冶工程,2002,22(2):1-5,9.


 


Yin Z M, Zhang S L. Research focus and development trend of high strength and high conductivity copper alloy [J]. Mining and Metallurgical Engineering, 2002,22 (2): 1-5,9.


 


[2]朱利媛, 李雷,冀国良, .Cu-4.0Ag合金微细线制备工艺及性能研究[J]. 特种铸造及有色合金, 2017, 37(12:1357-1360.


 


Zhu L Y, Li L, Ji G L, et al. Study on preparation technology and properties of Cu-4.0Ag alloy micro wire [J]. Special Casting & Nonferrous Alloys, 2017, 37(12:1357-1360.


 


[3]向文永, 陈小祝,匡同春, .集成电路用引线框架材料的研究现状与趋势[J].材料导报,2006,20(3):122-125.


 


Xiang W Y, Chen X Z, Kuang T C, et al. Research status and trend of lead frame materials for integrated circuits [J]. Materials Reports, 2006,20 (3): 122-125.


 


[4]袁远, 汤文亮.Cu-Al2O3弥散强化铜合金接触线的组织和性能[J].材料热处理学报,2020,41(1):33-38.


 


Yuan Y, Tang W L. Microstructure and properties of Cu-Al2O3 dispersion strengthened copper alloy contact wire [J]. Journal of Material Heat Treatment, 2020,41 (1): 33-38.


 


[5]张晓辉, 李永年,宁远涛, .高强度、高导电性Cu-Ag合金的研究进展[J].贵金属,2001,22(1):47-52.


 


Zhang X H, Li Y N, Ning Y T, et al. Research progress of high strength and high conductivity Cu-Ag alloys [J]. Precious Metals, 2001,22 (1): 47-52.


 


[6]Geng Y F, Ban Y J, Wang B J, et al. A review of microstructure and texture evolution with nanoscale precipitates for copper alloys [J]. Journal of Materials Research and Technology, 2020, 9(5):11918-11934.


 


[7]袁竭, 隆永胜,赵顺洪, .高强高导Cu合金强化技术研究进展[J].特种铸造及有色合金,2015,35(8):828-832.


 


Yuan J, Long Y S, Zhao S H, et al. Research progress on strengthening technology of high strength and high conductivity Cu alloy [J]. Special Casting & Nonferrous Alloys, 2015,35 (8): 828-832.


 


[8]周延军, 宋克兴,米绪军, .Cu-Be-Co-Zr合金时效析出动力学[J].稀有金属材料与工程,2018,47(4):1096-1099.


 


Zhou Y J, Song K X, Mi X J, et al. Aging precipitation kinetics of Cu-Be-Co-Zr alloy [J]. Rare Metal Materials and Engineering, 2018,47 (4): 1096-1099.


 


[9]谢志雄, 董仕节,罗平.均匀化对Cu-Fe-Ag复合材料组织和性能的影响[J].特种铸造及有色合金,2017,37(3):316-319.


 


Xie Z H, Dong S J, Luo P. Effect of homogenization on microstructure and properties of Cu-Fe-Ag composite [J]. Special Casting and Nonferrous Alloy, 2017,37 (3): 316-319.


 


[10]潘振亚. 高强高导Cu-Cr-Zr合金组织和性能的研究[D].上海:上海交通大学,2015.


 


Pan Z Y. Study on Microstructure and Properties of High Strength and High Conductivity Cu-Cr-Zr Alloy [D]. Shanghai: Shanghai Jiaotong University, 2015.


 


[11]Benghalem A,  Morris D G.Influence of solidification conditions, thermomechanical processing, and alloying additions on the structure and properties of in situ composite Cu-Ag alloys[J].Scripta Materialia,1999,41(10):1123-1130.


 


[12]Gaganov A,Freudenberger J,Grunberger W,et al.Microstructural evolution and its effect on the mechanical properties of Cu-Ag microcomposites[J].Zeitschrift Fur Metallkunde,2004,95(6):425-432.


 


[13]张亚宁, 严文,陈建, .塑性变形对单晶铜线材导电性影响的研究[J].西安工业学院学报,2005,25(2):150-152.


 


Zhang Y N, Yan W, Chen J, et al. Effect of plastic deformation on conductivity of single crystal copper wire [J]. Journal of Xian Technological University, 2005,25 (2): 150-152.


 


[14]于婷, 李学斌,李鸿娟, .拉拔变形量对硬铜轧制杆和拉拔杆组织及性能的影响[J].特种铸造及有色合金,2020,40(3):345-348.


 


Yu T, Li X B, Li H J, et al. Effect of drawing deformation on Microstructure and properties of hard copper rolling rod and drawing rod [J]. Special Casting and Nonferrous Alloy, 2020,40 (3): 345-348.


 


[15]Mishin O V, Jensen D J, Hansen N.Microstructures and boundary populations in materials produced by equal channel angular extrusion[J].Materials Science & Engineering, A,2003,342(1-2):320-328.


 


[16]Torkestani A,Dashtbayazi M R.A new method for severe plastic deformation of the copper sheets[J].Materials Science & Engineering, A,2018,737:236-244.


 


[17]Kad B K, Mishra A, Gregori F.Microstructural evolution in copper subjected to severe plastic deformation: Experiments and analysis[J].Acta Materialia,2007,55(26):13-28.


 


[18]潘志勇, 汪明朴,李周, .超高强度Cu-5.2Ni-1.2Si合金的形变热处理[J].中国有色金属学报,2007,17(11):1821-1826.


 


Pan Z Y, Wang M P, Li Z, et al. Thermomechanical treatment of ultra high strength Cu-5.2Ni-1.2Si alloy [J]. The Chinese Journal of Nonferrous Metals, 2007,17 (11): 1821-1826.


 


[19]Sakai Y,Inoue K,Asano T,et al.Development of high-strength high-conductivity Cu-Ag alloys for high-field pulsed magnet use[J].Applied Physics Letters,1991,59(23):2965-2967.


 


[20]Benghalem A,Morris D G.Microstructure and strength of wire-drawn Cu-Ag filamentary composites[J].Acta Materialia,1997,45(1):397-406.


 


[21]Liu J B,Meng L.Microstructure evolution and properties of Cu-Ag microcomposites with different Ag content[J].Materials Science and Engineering A,2006, 435(11):237-244.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9