网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
振动辅助塑性成形工艺及机理的研究进展
英文标题:Research progress on vibration-assisted plastic forming process and mechanism
作者:孟德安1 朱成成2 董渊哲2 赵升吨3 
单位:1.长安大学 2.长安大学 3.西安交通大学 
关键词:振动辅助塑性成形 应力叠加效应 振动软化效应 振动残余效应 振动减摩 界面摩擦 
分类号:TG306
出版年,卷(期):页码:2022,47(4):1-13
摘要:

 振动辅助塑性成形技术是近年来振动利用工程在塑性成形领域发展起来的一门新兴边缘交叉学科,振动场与塑性力场的耦合能产生诸如材料流动应力下降的体积效应和接触面摩擦力降低的表面效应。综述了振动辅助拉拔、拉深、挤压、轧制等成形工艺原理,分析了4种典型塑性成形工艺在振动场下的宏观表现、工艺特点和研究进展。在此基础上,围绕应力叠加效应、振动软化效应、振动残余效应,对振动辅助塑性成形机理方面的研究进行了总结;基于振动减摩和振动场下摩擦模型,对振动辅助塑性成形在界面摩擦行为方面的研究进行了分析;最后,对振动辅助塑性成形技术的发展前景进行了展望。

 In recent years, vibration-assisted plastic forming technology has become an emerging interdisciplinary subject due to the development of vibration utilization engineering in the field of plastic forming, and the coupling of vibration field and plastic force field can produce volume effect of reducing flow stress of material and surface effect of reducing friction at the interface. Therefore, the forming process principles of vibration-assisted drawing, deep drawing, extrusion and rolling, etc. were summarized, and the macroscopic performance, process characteristics and research progress of four typical plastic forming processes were analyzed under the vibration field. On this basis, the research on the mechanism of vibration-assisted plastic forming was summarized around stress superposition effect, vibration softening effect and vibration residual effect, and the interface friction behavior of vibration-assisted plastic forming was also analyzed based on antifriction by vibration and friction model under the vibration field. Finally, the development of vibration-assisted plastic forming technology was prospected. 

基金项目:
陕西省自然科学基础研究计划项目(2021JQ-250,2021JQ-278);陕西省科技重大专项(2020zdzx06-01-01,2019ZDLGY15-01)
作者简介:
作者简介:孟德安(1989-),男,博士,讲师 E-mail:flymendel@163.com 通信作者:董渊哲(1989-),男,博士,讲师 E-mail:dongyuanzhe1989@chd.edu.cn
参考文献:

 [1]孟德安,赵升吨,李永峄,等.低频振动式塑性加工的关键技术探讨[J].塑性工程学报,2014,21(4):7-13.


Meng D A, Zhao S D, Li Y Y, et al. Key technology of plastic forming with low frequency vibration[J]. Journal of Plasticity Engineering, 2014, 21(4): 7-13.

[2]吴晓,李建军,郑志镇,等.振动场作用下金属塑性成形机理的研究和应用进展[J].塑性工程学报,2015,22(4):1-7.

Wu X, Li J J, Zheng Z Z, et al. Research and application progress of metal plastic forming mechanism under vibration field[J]. Journal of Plasticity Engineering, 2015, 22(4): 1-7.

[3]赵升吨,李泳峄,范淑琴.超声振动塑性加工技术的现状分析[J].中国机械工程,2013,24(6):835-840.

Zhao S D, Li Y Y, Fan S Q. Status analysis of plastic processing technology with ultrasonic vibration[J]. China Mechanical Engineering, 2013, 24(6): 835-840.

[4]仲崇凯,管延锦,姜良斌,等.金属超声振动塑性成形技术研究现状及其发展趋势[J].精密成形工程,2015,(1):9-15.

Zhong C K, Guan Y J, Jiang L B, et al. Research status and development tendency of ultrasonic-vibration assisted metal plastic forming[J]. Journal of Netshape Forming Engineering, 2015, (1): 9-15.

[5]中国机械工程学会塑性工程分会.塑性成形技术路线图[M].北京:中国科学技术出版社,2016.

China Society for Technology of Plasticity. Plasticity Forming Technology Roadmaps[M]. Beijing: Science and Technology of China Press, 2016.

[6]何勍.振动塑性加工过程中的非线性动力学研究[D].沈阳:东北大学,2000.

He Q. Study on the Nonlinear Dynamics of Oscillatory Plastic Working Process[D]. Shenyang: Northeastern University, 2000.

[7]Rosenfield A R. The application of ultrasonic energy in the deformation of metals[R]. Battelle Memorial Inst Columbus Ohio Defense Metals Information Center, 1963.

[8]Langenecker B. Effects of ultrasound on deformation characteristics of metals[J]. IEEE Transactions on Sonics & Ultrasonics, 1966, 13(1): 1-8.

[9]Graff K F. Power Ultrasonics Applications of High-intensity Ultrasound[M]. Cambridge: Woodhead Publishing, 2015.

[10]Siegert K, Ulmer J. Superimposing ultrasonic waves on the dies in tube and wire drawing[J]. Journal of Engineering Materials and Technology-Transactions of the ASME, 2001, 123(4): 517-523.

[11]Murakawa M, Jin M. The utility of radially and ultrasonically vibrated dies in the wire drawing process[J]. Journal of Materials Processing Technology, 2001, 113(1): 81-86.

[12]Hayashi M, Jin M, Thipprakmas S, et al. Simulation of ultrasonic-vibration drawing using the finite element method (FEM)[J]. Journal of Materials Processing Technology, 2003, 140(1-3): 30-35.

[13]李连诗,张力行,杨效平,等.超声波振动拔管拔丝的研究[J].钢铁,1995,(3):39-44.

Li L S, Zhang L X, Yang X P, et al. Tube and wire drawing with ultrasonic vibration[J]. Iron and Steel, 1995, (3): 39-44.

[14]孟永钢,刘新忠,陈军.超声波在拔丝加工中减摩降载作用的研究[J].清华大学学报:自然科学版,1998,(4):28-32.

Meng Y G, Liu X Z, Chen J. Investigation on the effect of ultrasonic vibration on reduction in drawing force[J]. Journal of Tsinghua University: Science and Technology, 1998, (4): 28-32.

[15]齐海群.超声振动拉丝相关理论及其实验研究[D].哈尔滨:哈尔滨工业大学,2009.

Qi H Q. Relative Theory and Experimental Research on the Wire Drawing Using Ultrasonic Vibration[D]. Harbin: Harbin Institute of Technology, 2009.

[16]Pasierb A, Wojnar A. An experimental investigation of deep drawing and drawing processes of thin-walled products with utilization of ultrasonic vibrations[J]. Journal of Materials Processing Technology, 1992, 34(1-4): 489-494.

[17]Jimma T, Kasuga Y, Iwaki N, et al. An application of ultrasonic vibration to the deep drawing process[J]. Journal of Materials Processing Technology, 1998, 80-81: 406-412.

[18]Kristoffy I. Metal forming with vibrated tools[J]. Journal of Engineering for Industry, 1969, 91(4): 1168-1174.

[19]Koga N, Asaka M, Junlapen K. Deep-drawing and ironing of 1050 aluminum sheets loaded with vibration using NC servo press machine[J]. Journal of Japan Institute of Light Metals, 2007, 57(6): 240-244.

[20]韩光超,刘军,温晓宁,等.基于不同振动模式的超声辅助拉深精密成形工艺[J].锻压技术,2021,46(9):118-123. 

Han G C, Liu J, Wen X N, et al. Precision forming process by ultrasonic assisted deep drawing based on different vibration modes [J]. Forging & Stamping Technology, 2021, 46(9): 118-123. 

[21]Komatsu I, Murakami T. Practical Use of Servo Press[M]. Tokyo: Nikkan Kougyou Shinbunsha, 2009.

[22]Kriechenbauer S, Mauermann R, Muller P. Deep drawing with superimposed low-frequency vibrations on servo-screw presses[J]. Procedia Engineering, 2014, 81: 905-913.

[23]Hung J C. Evaluation of friction in ultrasonic vibration-assisted press forging using double cup extrusion tests[J]. International Journal of Precision Engineering & Manufacturing, 2012, 13(12): 2103-2108.

[24]Hung J C, Tsai Y C, Hung C. Frictional effect of ultrasonic-vibration on upsetting[J]. Ultrasonics, 2007, 46(3): 277-284.

[25]Mousavi S A, Feizi H, Madoliat R. Investigations on the effects of ultrasonic vibrations in the extrusion process[J]. Journal of Materials Processing Technology, 2007, 187: 657-661.

[26]Liu Y, Han Q, Hua L, et al. Numerical and experimental investigation of upsetting with ultrasonic vibration of pure copper cone tip[J]. Ultrasonics, 2013, 53(3): 803-807.

[27]Bunget C, Ngaile G. Influence of ultrasonic vibration on micro-extrusion[J]. Ultrasonics, 2011, 51(5): 606-616.

[28]Seo Y H, Chan J P, Kim B H, et al. Development of audio frequency vibration microforming system[J]. International Journal of Precision Engineering & Manufacturing, 2012, 13(5): 789-794.

[29]姚喆赫.超声能场在金属微/介观成形中的作用理论及实验研究[D].杭州:浙江大学,2016.

Yao Z H. Theorical and Experimental Studies on Effects of Ultrasonic Energy Field in Micro/meso Metal Forming[D]. Hangzhou: Zhejiang University, 2016.

[30]Osakada K, Matsumoto R, Otsu M, et al. Precision extrusion methods with double axis servo-press using counter pressure[J]. CIRP Annals-Manufacturing Technology, 2005, 54(1): 245-248.

[31]Maeno T, Osakada K, Mori K. Reduction of friction in compression of plates by load pulsation[J]. International Journal of Machine Tools & Manufacture, 2011, 51(7): 612-617.

[32]Gmb H F. Axial forming[EB/OL]. http://wwwfelsscom/topic/35/2018.2011-5-18.

[33]胡子非,毛华杰.可轴向振动挤压模体精锻过程中振幅影响的数值模拟[J].热加工工艺,2007,36(13):78-80.

Hu Z F, Mao H J. Numerical simulation of axial oscillation of extrusion container in different amplitudes during precision forging[J]. Hot Working Technology, 2007, 36(13): 78-80.

[34]陈占斌,杨连发,李贤章,等.微小管轴向超声辅助液压成形装置的设计与开发[J].锻压技术,2021,46(4):69-75.

Chen Z B, Yang L F, Li X Z, et al. Design and development on axial ultrasonic assisted hydroforming device for microtubule[J]. Forging & Stamping Technology, 2021, 46(4): 69-75.

[35]梁瑜轩,黎向锋,左敦稳,等.内螺纹低频冷挤压振动加工装置设计[J].兵器材料科学与工程,2011,34(5):66-69.

Liang Y X, Li X F, Zuo D W, et al. Design of vibration processing equipment of internal thread formed by cold extrusion[J]. Ordnance Material Science and Engineering, 2011, 34(5): 66-69. 

[36]王宇飞,周芃,邓磊,等.振动辅助弯曲对残余应力的影响[J].锻压技术,2020,45(10):27-34.

Wang Y F, Zhou F, Deng L, et al. Influence of vibration assisted bending on residual stress[J]. Forging & Stamping Technology, 2020, 45(10): 27-34.

[37]马道章.超声波在金属塑性加工上的应用[J].有色金属材料与工程,1980,(3):31-40.

Ma D Z. Application of ultrasonic in plastic processing of metals[J]. Nonferrous Metal Materials and Engineering, 1980, (3): 31-40.

[38]Severdenko V P, Klubovich V V, Stepanenko A V. Ultrasonic Rolling and Drawing of Metals[M]. New York: Springer US, 1972.

[39]Severdenko V P, Stepanenko A V, Zayash I V. The effect of roll velocity on the efficiency of the ultrasonic oscillation technique[J]. Russian Ultrasonics, 1972, 2(1): 33-36.

[40]Yao Z H, Kim G Y, Faidley L A, et al. Effects of superimposed high-frequency vibration on deformation of aluminum in micro/meso-scale upsetting[J]. Journal of Materials Processing Technology, 2012, 212(3): 640-646.

[41]Nevill G E, Brotzen F R. The effect of vibrations on the static yield strength of a low-carbon steel[J]. Proceeding of American Society for Testing Material, 1957, 57: 751-758.

[42]Oelschlagel D. Recent investigations into the ultrasonic influence on crystal plasticity[J]. Acta Phys. Austriaca, 1964, 18(2-4): 175-179.

[43]Abramov O V. Ultrasound in Liquid and Solid Metals[M]. London: CRC Press, 1994.

[44]Dutta R K, Petrov R, Delhez R, et al. The effect of tensile deformation by in situ ultrasonic treatment on the microstructure of low-carbon steel[J]. Acta Materialia, 2013, 61(5): 1592-1602.

[45]Siu K W, Ngan A H W, Jones I P. New insight on acoustoplasticity-Ultrasonic irradiation enhances subgrain formation during deformation[J]. International Journal of Plasticity, 2011, 27(5): 788-800.

[46]Huang H, Pequegnat A, Chang B H, et al. Influence of superimposed ultrasound on deformability of Cu[J]. Journal of Applied Physics, 2009, 106(11): 1144-1198.

[47]Lum I, Huang H, Chang B H, et al. Effects of superimposed ultrasound on deformation of gold[J]. Journal of Applied Physics, 2009, 105(1): 1-5.

[48]Zhou H, Cui H, Qin Q H, et al. A comparative study of mechanical and microstructural characteristics of aluminium and titanium undergoing ultrasonic assisted compression testing[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2017, 682: 376-388.

[49]Kirchner H O K, Kromp W, Prinz F B, et al. Plastic deformation under simultaneous cyclic and unidirectional loading at low and ultrasonic frequencies[J]. Materials Science and Engineering, 1985, 68(2): 197-206.

[50]Atanasiu N. Metal forming in the ultrasonic field[J]. Advanced Technology of Plasticity, 1984, 2: 799-804.

[51]蔡改贫,姜志宏,翁海珊.低频振动塑性成形粘弹塑性模型的体积效应分析[J].机械强度,2007,29(2):346-350.

Cai G P, Jiang Z H, Weng H S. Volume effect analysis of visco-elasticity plasticity models for plastic deformation with low-frequency vibration[J]. Journal of Mechanical Strength, 2007, 29(2): 346-350.

[52]Rusinko A. Analytical description of ultrasonic hardening and softening[J]. Ultrasonics, 2011, 51(6): 709-714.

[53]Siddiq A, Sayed T E. Acoustic softening in metals during ultrasonic assisted deformation via CP-FEM[J]. Materials Letters, 2011, 65(2): 356-359.

[54]Siddiq A, Sayed T E. A thermomechanical crystal plasticity constitutive model for ultrasonic consolidation[J]. Computational Materials Science, 2012, 51(1): 241-251.

[55]Yao Z, Kima G Y, Faidley L A, et al. Acoustic softening and residual hardening in aluminum: Modeling and experiments[J]. International Journal of Plasticity, 2012, 39(39): 75.

[56]Pohlman R, Lehfeldt E. Influence of ultrasonic vibration on metallic friction[J]. Ultrasonics, 1969, 4(4): 178-185.

[57]Siegert K, Ulmer J. Influencing the friction in metal forming processes by superimposing ultrasonic waves[J]. CIRP Annals-Manufacturing Technology, 2001, 50(1): 195-200.

[58]Kumar V C, Hutchings I M. Reduction of the sliding friction of metals by the application of longitudinal or transverse ultrasonic vibration[J]. Tribology International, 2004, 37(10): 833-840.

[59]Popov V L, Starcevic J, Filippov A E. Influence of ultrasonic in-plane oscillations on static and sliding friction and intrinsic length scale of dry friction processes[J]. Tribology Letters, 2010, 39(1): 25-30.

[60]Matsumoto R, Hayashi K, Utsunomiya H. Experimental and numerical analysis of friction in high aspect ratio combined forward-backward extrusion with retreat and advance pulse ram motion on a servo press[J]. Journal of Materials Processing Technology, 2014, 214(4): 936-944.

[61]Maeno T, Mori K, Hori A. Application of load pulsation using servo press to plate forging of stainless steel parts[J]. Journal of Materials Processing Technology, 2014, 214(7): 1379-1387.

[62]Ben N Y, Zhang Q, Meng D A, et al. Analysis of real contact area and re-lubrication in oscillating bulk forming process by corrosion method[J]. Journal of Materials Processing Technology, 2017, 253: 178-194.

[63]Maeno T, Mori K, Ichikawa Y, et al. Use of liquid lubricant for backward extrusion of cup with internal splines using pulsating motion[J]. Journal of Materials Processing Technology, 2017, 244: 273-281.

[64]Storck H, Littmann W, Wallaschek J, et al. The effect of friction reduction in presence of ultrasonic vibrations and its relevance to travelling wave ultrasonic motors[J]. Ultrasonics, 2002, 40(1): 379-383.

[65]Tsai C C, Tseng C H. The effect of friction reduction in the presence of in-plane vibrations[J]. Archive of Applied Mechanics, 2006, 75(2-3): 164-176.

[66]Teidelt E, Popov V L. Influence of ultrasonic oscillation on static and sliding friction[J]. Tribology Letters, 2012, 48(1): 51-62.

[67]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2012.

Wen S Z, Huang P. Principles of Tribology[M]. Beijing: Tsinghua University Press, 2012. 

[68]胡新华,王志恒,鲍官军,等.电液颤振对6061铝合金反挤压成形过程的影响[J] .中国有色金属学报,2015,25(9):3056-3063.

Hu X H, Wang Z H, Bao G J, et al. Influences of electric-hydraulic chattering on backward exktrusion 

process of 6061 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(9): 

3056-3063.

 

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9